메뉴 건너뛰기




Volumn 76 LNCSE, Issue , 2011, Pages 307-315

Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map

Author keywords

[No Author keywords available]

Indexed keywords

A-THERMAL; ADVECTION DIFFUSION EQUATION; CORRECTION TERMS; DIFFUSION TENSOR; ERROR ESTIMATORS; GEOMETRIC MAPS; INTERPOLATION METHOD; PARAMETRIC DOMAINS; PIECEWISE POLYNOMIALS; POSTERIORI ERROR; REDUCED-BASIS APPROXIMATION; REFERENCE DOMAINS; SHAPE OPTIMIZATION PROBLEM; THERMAL FLOWS;

EID: 78651572418     PISSN: 14397358     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-15337-2_28     Document Type: Conference Paper
Times cited : (30)

References (16)
  • 1
    • 15744385841 scopus 로고    scopus 로고
    • An Empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations
    • M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris, 339(9):667-672, 2004
    • (2004) C. R. Math. Acad. Sci. Paris , vol.339 , Issue.9 , pp. 667-672
    • Barrault, M.1    Maday, Y.2    Nguyen, N.C.3    Patera, A.T.4
  • 2
    • 57049107305 scopus 로고    scopus 로고
    • A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
    • Y. Chen, J. Hestaven, Y. Maday, and J. Rodriguez. A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. C. R. Acad. Sci. Paris, Ser. I, 346:1295-1300, 2008
    • (2008) C. R. Acad. Sci. Paris, Ser. I , vol.346 , pp. 1295-1300
    • Chen, Y.1    Hestaven, J.2    Maday, Y.3    Rodriguez, J.4
  • 6
    • 36148955493 scopus 로고    scopus 로고
    • A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability costants
    • D.B.P Huynh, G. Rozza, S. Sen, and A.T. Patera. A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability costants. C. R. Acad. Sci. Paris. Sér. I Math., 345:473-478, 2007
    • (2007) C. R. Acad. Sci. Paris. Sér. I Math. , vol.345 , pp. 473-478
    • Huynh, D.B.P.1    Rozza, G.2    Sen, S.3    Patera, A.T.4
  • 7
    • 77951147428 scopus 로고    scopus 로고
    • Parametric free-form shape design with PDE models and reduced basis method
    • T. Lassila and G. Rozza. Parametric free-form shape design with PDE models and reduced basis method. Comput. Meth. Appl. Mech. Eng., 199(23-24):1583-1592, 2010
    • (2010) Comput. Meth. Appl. Mech. Eng. , vol.199 , Issue.23-24 , pp. 1583-1592
    • Lassila, T.1    Rozza, G.2
  • 8
    • 36148940323 scopus 로고    scopus 로고
    • A posteriori error estimation and basis adaptivity for reduced-basis approximation of nonaffine-parametrized linear elliptic partial differential equations
    • N.C. Nguyen. A posteriori error estimation and basis adaptivity for reduced-basis approximation of nonaffine-parametrized linear elliptic partial differential equations. J. Comp. Phys., 227:983-1006, 2007
    • (2007) J. Comp. Phys. , vol.227 , pp. 983-1006
    • Nguyen, N.C.1
  • 10
    • 56749091165 scopus 로고    scopus 로고
    • Reduced basis methods for optimal control of advection-diffusion problem
    • W. Fitzgibbon, R. Hoppe, J. Periaux, O. Pironneau, and Y. Vassilevski, Editors
    • A. Quarteroni, G. Rozza, and A. Quaini. Reduced basis methods for optimal control of advection-diffusion problem. In Advances in Numerical Mathematics, W. Fitzgibbon, R. Hoppe, J. Periaux, O. Pironneau, and Y. Vassilevski, Editors, pages 193-216, 2007
    • (2007) Advances in Numerical Mathematics , pp. 193-216
    • Quarteroni, A.1    Rozza, G.2    Quaini, A.3
  • 12
    • 58149482598 scopus 로고    scopus 로고
    • Reduced basis methods for Stokes equations in domains with non-affine parameter dependence
    • G. Rozza. Reduced basis methods for Stokes equations in domains with non-affine parameter dependence. Comput. Vis. Sci., 12(1):23-35, 2009
    • (2009) Comput. Vis. Sci. , vol.12 , Issue.1 , pp. 23-35
    • Rozza, G.1
  • 13
    • 53749107686 scopus 로고    scopus 로고
    • Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
    • G. Rozza, D.B.P. Huynh, and A.T. Patera. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng., 15:229-275, 2008
    • (2008) Arch. Comput. Methods Eng. , vol.15 , pp. 229-275
    • Rozza, G.1    Huynh, D.B.P.2    Patera, A.T.3
  • 14
    • 0022758626 scopus 로고
    • Free-form deformation of solid geometric models
    • T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models. Comput. Graph., 20(4):151-160, 1986
    • (1986) Comput. Graph. , vol.20 , Issue.4 , pp. 151-160
    • Sederberg, T.W.1    Parry, S.R.2
  • 15
    • 56749131053 scopus 로고    scopus 로고
    • A reduced-basis method for solving parameter-dependent convectiondiffusion problems around rigid bodies
    • T. Tonn and K. Urban. A reduced-basis method for solving parameter-dependent convectiondiffusion problems around rigid bodies. In Proc. ECCOMAS CFD, 2006
    • (2006) Proc. ECCOMAS CFD
    • Tonn, T.1    Urban, K.2
  • 16
    • 85088184409 scopus 로고    scopus 로고
    • A posteriori error bounds for reducedbasis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations
    • K. Veroy, C. Prud'homme, D.V. Rovas, and A.T. Patera. A posteriori error bounds for reducedbasis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In Proc. 16th AIAA Comput. Fluid Dyn., 2003
    • (2003) Proc. 16th AIAA Comput. Fluid Dyn.
    • Veroy, K.1    Prud'Homme, C.2    Rovas, D.V.3    Patera, A.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.