메뉴 건너뛰기




Volumn 4, Issue 6, 2010, Pages 161-167

Multi-factor predication of diesel engine by using artificial neural networks

Author keywords

Artificial neural network; Engine predictive model; Non linear

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; DIESEL ENGINES; MODEL PREDICTIVE CONTROL; PREDICTIVE ANALYTICS;

EID: 78651547983     PISSN: 19759339     EISSN: None     Source Type: Journal    
DOI: 10.4156/jdcta.vol4.issue6.19     Document Type: Article
Times cited : (10)

References (16)
  • 2
    • 0031210755 scopus 로고    scopus 로고
    • Models and control methodologies for IC engine idle speed control design
    • 93-10
    • Hrovat, D., Sun, J., Models and control methodologies for IC engine idle speed control design. Control Engineering Practice 5 (8), 93-10. 1997.
    • (1997) Control Engineering Practice , vol.5 , Issue.8
    • Hrovat, D.1    Sun, J.2
  • 3
    • 0033895635 scopus 로고    scopus 로고
    • On-Line PID tuning for engine idle-speed control using continuous action reinforcement learning automata
    • Howell, M.N., Best, M.C, On-line PID tuning for engine idle-speed control using continuous action reinforcement learning automata. Control Engineering Practice 8, 147-154, 2000.
    • (2000) Control Engineering Practice , vol.8 , pp. 147-154
    • Howell, M.N.1    Best, M.C.2
  • 7
    • 0024991997 scopus 로고    scopus 로고
    • Network and the best approximation property
    • Girosi, F., Poggio, T., 1999. Network and the best approximation property. Biological Cybernetics 63, 169-176.
    • (1999) Biological Cybernetics , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 8
    • 58949089962 scopus 로고    scopus 로고
    • A recursive least squares implementation for LCMP beam-forming under quadratic constraint
    • Zhi, T., Kristine, L., Bell, H.L., Van, T., 2001. A recursive least squares implementation for LCMP beam-forming under quadratic constraint. IEEE Transaction on Signal Processing 49 (6), 354-362.
    • (2001) IEEE Transaction On Signal Processing , vol.49 , Issue.6 , pp. 354-362
    • Zhi, T.1    Kristine, L.2    Bell, H.L.3    van, T.4
  • 11
    • 60849091900 scopus 로고    scopus 로고
    • Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil
    • Canakci, M., Ozsezen, A. N., Arcaklioglu, E., & Erdil, A. (2009). Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Systems with Applications, 36(5), 9268-9280.
    • (2009) Expert Systems With Applications , vol.36 , Issue.5 , pp. 9268-9280
    • Canakci, M.1    Ozsezen, A.N.2    Arcaklioglu, E.3    Erdil, A.4
  • 12
    • 48849104204 scopus 로고    scopus 로고
    • Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque Hilsch vortex tubes using artificial neural networks
    • Dincer, K., Tasdemir, S., Baskaya, S., & Uysal, B. Z. (2008). Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque Hilsch vortex tubes using artificial neural networks. Applied Thermal Engineering, 28(17-18), 2380-2390.
    • (2008) Applied Thermal Engineering , vol.28 , Issue.17-18 , pp. 2380-2390
    • Dincer, K.1    Tasdemir, S.2    Baskaya, S.3    Uysal, B.Z.4
  • 13
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in the renewable energy systems applications: A review
    • Kalogirou, S. A. (2001). Artificial neural networks in the renewable energy systems applications: A review. Renewable and Sustainable Energy Reviews, 5, 373-401.
    • (2001) Renewable and Sustainable Energy Reviews , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 14
    • 0038238083 scopus 로고    scopus 로고
    • Application of artificial neural network to predict the optimal start time for heating system in building
    • Yang, I. H., Yeo, M. S., & Kim, K. W. (2003). Application of artificial neural network to predict the optimal start time for heating system in building. Energy Conversion and Management, 44(17), 2791-2809.
    • (2003) Energy Conversion and Management , vol.44 , Issue.17 , pp. 2791-2809
    • Yang, I.H.1    Yeo, M.S.2    Kim, K.W.3
  • 15
    • 0037374672 scopus 로고    scopus 로고
    • Back-propagation neural networks for modeling gasoline consumption
    • Nasr, G. E., & Badr, C. J. (2003). Back-propagation neural networks for modeling gasoline consumption. Energy Conversion and Management, 44(6), 893-905.
    • (2003) Energy Conversion and Management , vol.44 , Issue.6 , pp. 893-905
    • Nasr, G.E.1    Badr, C.J.2
  • 16
    • 33947695717 scopus 로고    scopus 로고
    • The artificial neural networks approach for evaluation of temperature and density profiles of salt gradient solar pond
    • Kurt, H., Atik, K., Ozkaymak, M., & Binark, A. K. (2007). The artificial neural networks approach for evaluation of temperature and density profiles of salt gradient solar pond.Journal of the Energy Institute, 80 (1), 46-51.
    • (2007) Journal of the Energy Institute , vol.80 , Issue.1 , pp. 46-51
    • Kurt, H.1    Atik, K.2    Ozkaymak, M.3    Binark, A.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.