메뉴 건너뛰기




Volumn 5, Issue 9, 2010, Pages

Relevance vector ranking for information retrieval

Author keywords

Learning to rank; Relevance vector learning; Sparse model

Indexed keywords

ACCURATE PREDICTION; BASIS FUNCTIONS; BAYESIAN; DATA SETS; DOCUMENT RETRIEVAL; GENERALIZATION PERFORMANCE; KERNEL APPROACHES; LEARNING TO RANK; MACHINE LEARNING COMMUNITIES; PREDICTION MODEL; RANKING FUNCTIONS; RELEVANCE VECTOR LEARNING; SPARSE MODEL; SUPPORT VECTOR; SUPPORT VECTOR LEARNING; TRAINING DATA SETS; TWO-STATE;

EID: 78651547639     PISSN: 19759320     EISSN: None     Source Type: Journal    
DOI: 10.4156/jcit.vol5. issue9.12     Document Type: Article
Times cited : (10)

References (21)
  • 1
    • 78651593888 scopus 로고    scopus 로고
    • Optimizing document similarity detection in Persian information retrieval
    • Kashefi O, Mohseni N, Minaei B, Optimizing document similarity detection in Persian information retrieval, Journal of Convergence Information Technology, vol.5, no. 2, pp.101-106, 2010.
    • (2010) Journal of Convergence Information Technology , vol.5 , Issue.2 , pp. 101-106
    • Kashefi, O.1    Mohseni, N.2    Minaei, B.3
  • 9
    • 31844453751 scopus 로고    scopus 로고
    • Preference learning with Gaussian processes
    • Chu W, Ghahramani Z. Preference learning with Gaussian processes. In Proceeding pp. 137, 2005.
    • (2005) Proceeding , pp. 137
    • Chu, W.1    Ghahramani, Z.2
  • 12
    • 45849149280 scopus 로고    scopus 로고
    • Naive Bayes for optimal ranking
    • Zhang H, Su J, Naive Bayes for optimal ranking, J EXP THEOR ARTIF IN, vol.20, no. 2, pp.79-93, 2008.
    • (2008) J EXP THEOR ARTIF IN , vol.20 , Issue.2 , pp. 79-93
    • Zhang, H.1    Su, J.2
  • 13
    • 2942601433 scopus 로고    scopus 로고
    • A generic ranking function discovery framework by genetic programming for information retrieval
    • Fan W, Gordon MD, Pathak P, A generic ranking function discovery framework by genetic programming for information retrieval, INFORM PROCESS MANAG, vol.40, no. 4, pp.587-602, 2004.
    • (2004) INFORM PROCESS MANAG , vol.40 , Issue.4 , pp. 587-602
    • Fan, W.1    Gordon, M.D.2    Pathak, P.3
  • 14
    • 70450239631 scopus 로고    scopus 로고
    • The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List
    • Rudin C, The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List, J MACH LEARN RES, vol.10, no. pp.2233-2271, 2009.
    • (2009) J MACH LEARN RES , vol.10 , pp. 2233-2271
    • Rudin, C.1
  • 15
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • Tipping ME, Sparse Bayesian Learning and the Relevance Vector Machine, J MACH LEARN RES, vol.1, no. 3, pp.211-244, 2001.
    • (2001) J MACH LEARN RES , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 16
    • 0002704818 scopus 로고
    • A Practical Bayesian Framework for Backpropagation Networks
    • MacKay DJC, A Practical Bayesian Framework for Backpropagation Networks, NEURAL COMPUT, vol.4, no. 3, pp.448-472, 1992.
    • (1992) NEURAL COMPUT , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 19
    • 16244362331 scopus 로고    scopus 로고
    • Binary and graded relevance in IR evaluations - Comparison of the effects on ranking of IR systems
    • Kekalainen J, Binary and graded relevance in IR evaluations - Comparison of the effects on ranking of IR systems, INFORM PROCESS MANAG, vol.41, no. 5, pp.1019-1033, 2005.
    • (2005) INFORM PROCESS MANAG , vol.41 , Issue.5 , pp. 1019-1033
    • Kekalainen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.