-
1
-
-
26944484259
-
Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes
-
DOI 10.1137/040613950
-
Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal., 43(3):1872-1896, 2005. (Pubitemid 44598663)
-
(2005)
SIAM Journal on Numerical Analysis
, vol.43
, Issue.5
, pp. 1872-1896
-
-
Brezzi, F.1
Lipnikov, K.2
Shashkov, M.3
-
2
-
-
0035834895
-
On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra
-
Buffa, A., Ciarlet, Jr., P.: On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci., 24:9-30, 2001.
-
(2001)
Math. Methods Appl. Sci.
, Issue.24
, pp. 9-30
-
-
Buffa, A.1
Ciarlet Jr., P.2
-
3
-
-
0345060038
-
Boundary element methods for Maxwell transmission problems in Lipschitz domains
-
Buffa, A., Hiptmair, R., von Petersdorff, T., Schwab, C.: Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math., 95:459-485, 2003.
-
(2003)
Numer. Math.
, vol.95
, pp. 459-485
-
-
Buffa, A.1
Hiptmair, R.2
Von Petersdorff, T.3
Schwab, C.4
-
4
-
-
78651506427
-
Boundary-element-based finite element methods for Helmholtz and Maxwell equations on general polyhedral meshes
-
Copeland, D.: Boundary-element-based finite element methods for Helmholtz and Maxwell equations on general polyhedral meshes. Int. J. Appl. Math. Com-put. Sci., 5(1):60-73, 2009.
-
(2009)
Int. J. Appl. Math. Com-put. Sci.
, vol.5
, Issue.1
, pp. 60-73
-
-
Copeland, D.1
-
5
-
-
0002349877
-
Domain decomposition in boundary element methods
-
R. Glowinski, Y.A. Kuznetsov, G. Meurant, J. Périaux and O.B. Widlund, eds. Moscow, May 21-25.1990. Philadelphia, SIAM
-
Hsiao, G.C., Wendland, W.L.: Domain decomposition in boundary element methods. In R. Glowinski, Y.A. Kuznetsov, G. Meurant, J. Périaux and O.B. Widlund, eds., Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Moscow, May 21-25, 1990, pages 41-49, Philadelphia, 1991. SIAM.
-
(1991)
Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations
, pp. 41-49
-
-
Hsiao, G.C.1
Wendland, W.L.2
-
6
-
-
22144481628
-
The mimetic finite difference method on polygonal meshes for diffusion-type problems
-
DOI 10.1007/s10596-004-3771-1
-
Kuznetsov, Y., Lipnikov, K., Shashkov, M.: Mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci., 8(4):301-324, December 2004. (Pubitemid 40974198)
-
(2004)
Computational Geosciences
, vol.8
, Issue.4
, pp. 301-324
-
-
Kuznetsov, Y.1
Lipnikov, K.2
Shashkov, M.3
-
7
-
-
34248160076
-
Coupled finite and boundary element domain decomposition methods
-
M. Schanz and O. Steinbach, eds., Boundary Element Analysis: Mathematical Aspects and Application. Berlin, Springer
-
Langer, U., Steinbach, O.: Coupled finite and boundary element domain decomposition methods. In M. Schanz and O. Steinbach, eds., Boundary Element Analysis: Mathematical Aspects and Application, vol.29 of Lecture Notes in Applied and Computational Mechanics, pages 29-59, Berlin, 2007. Springer.
-
(2007)
Lecture Notes in Applied and Computational Mechanics
, vol.29
, pp. 29-59
-
-
Langer, U.1
Steinbach, O.2
-
10
-
-
27644574907
-
-
Teubner, Stuttgart, Leipzig, Wiesbaden
-
Sauter, S., Schwab, C.: Randelementemethoden: Analyse, Numerik und Im-plementierung schneller Algorithmen. Teubner, Stuttgart, Leipzig, Wiesbaden, 2004.
-
(2004)
Randelementemethoden: Analyse, Numerik und Im-plementierung Schneller Algorithmen
-
-
Sauter, S.1
Schwab, C.2
-
11
-
-
84892265409
-
Numerical approximation methods for elliptic boundary value problems
-
Springer, New York
-
Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York, 2008.
-
(2008)
Finite and Boundary Elements
-
-
Steinbach, O.1
|