메뉴 건너뛰기




Volumn 16, Issue 6, 2011, Pages 2656-2657

Comments on " Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control" [Commun Nonlinear Sci Numer Simulat 2010;15:3754-3762]

Author keywords

Chaos synchronization; Fractional order systems; Lyapunov theorem; Robust synchronization

Indexed keywords


EID: 78651449513     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2010.08.032     Document Type: Note
Times cited : (5)

References (13)
  • 1
    • 77952883806 scopus 로고    scopus 로고
    • Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control
    • Pan L., Zhou W., Fang J., Li D. Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control. Commun Nonlinear Sci Numer Simul 2010, 15:3754-3762.
    • (2010) Commun Nonlinear Sci Numer Simul , vol.15 , pp. 3754-3762
    • Pan, L.1    Zhou, W.2    Fang, J.3    Li, D.4
  • 2
    • 67649626081 scopus 로고    scopus 로고
    • Mittag-Leffler stability of fractional order nonlinear dynamic systems
    • Li Y., Chen Y., Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 2009, 45:1965-1969.
    • (2009) Automatica , vol.45 , pp. 1965-1969
    • Li, Y.1    Chen, Y.2    Podlubny, I.3
  • 3
    • 76449092011 scopus 로고    scopus 로고
    • Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
    • Li Y., Chen Y., Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 2010, 59:1810-1821.
    • (2010) Comput Math Appl , vol.59 , pp. 1810-1821
    • Li, Y.1    Chen, Y.2    Podlubny, I.3
  • 4
    • 78049350845 scopus 로고    scopus 로고
    • A Lyapunov approach to the stability of fractional differential equations, Signal Processing, in press, doi:10.1016/j.sigpro.2010.04.024. doi:10.1016/j.sigpro.2010.04.024
    • Trigeassou JC, Maamri N, Sabatier J, Oustaloup A. A Lyapunov approach to the stability of fractional differential equations, Signal Processing, in press, doi:10.1016/j.sigpro.2010.04.024. doi:10.1016/j.sigpro.2010.04.024.
    • Trigeassou, J.C.1    Maamri, N.2    Sabatier, J.3    Oustaloup, A.4
  • 7
    • 60849138778 scopus 로고    scopus 로고
    • Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control
    • Wang X., Song J. Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun Nonlinear Sci Numer Simul 2009, 14:3351-3357.
    • (2009) Commun Nonlinear Sci Numer Simul , vol.14 , pp. 3351-3357
    • Wang, X.1    Song, J.2
  • 8
    • 77952237940 scopus 로고    scopus 로고
    • Synchronization of different fractional order chaotic systems using active control
    • Bhalekar S., Daftardar-Gejji V. Synchronization of different fractional order chaotic systems using active control. Commun Nonlinear Sci Numer Simul 2010, 15:3536-3546.
    • (2010) Commun Nonlinear Sci Numer Simul , vol.15 , pp. 3536-3546
    • Bhalekar, S.1    Daftardar-Gejji, V.2
  • 9
    • 70349789880 scopus 로고    scopus 로고
    • Dynamical models of happiness with fractional order
    • Song L., Xu S., Yang J. Dynamical models of happiness with fractional order. Commun Nonlinear Sci Numer Simul 2010, 15:616-628.
    • (2010) Commun Nonlinear Sci Numer Simul , vol.15 , pp. 616-628
    • Song, L.1    Xu, S.2    Yang, J.3
  • 10
    • 41649105825 scopus 로고    scopus 로고
    • Generalized projective synchronization of fractional order chaotic systems
    • Penga Guojun, Jianga Yaolin, Chenb Fang Generalized projective synchronization of fractional order chaotic systems. Physica A 2008, 387:3738-3746.
    • (2008) Physica A , vol.387 , pp. 3738-3746
    • Penga, G.1    Jianga, Y.2    Chenb, F.3
  • 11
    • 35748971445 scopus 로고    scopus 로고
    • Synchronization of chaotic fractional-order systems via active sliding mode controller
    • Tavazoei M.S., Haeri M. Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 2008, 387:57-70.
    • (2008) Physica A , vol.387 , pp. 57-70
    • Tavazoei, M.S.1    Haeri, M.2
  • 12
    • 33749563875 scopus 로고    scopus 로고
    • On chaos synchronization of fractional differential equations
    • Yan J., Li C. On chaos synchronization of fractional differential equations. Chaos, Solitons Fractals 2007, 32:725-735.
    • (2007) Chaos, Solitons Fractals , vol.32 , pp. 725-735
    • Yan, J.1    Li, C.2
  • 13
    • 67649319511 scopus 로고    scopus 로고
    • Chaos synchronization of the fractional-order Chen's system
    • Zhu H., Zhou S., He Z. Chaos synchronization of the fractional-order Chen's system. Chaos, Solitons Fractals 2009, 41:2733-2740.
    • (2009) Chaos, Solitons Fractals , vol.41 , pp. 2733-2740
    • Zhu, H.1    Zhou, S.2    He, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.