메뉴 건너뛰기




Volumn 82, Issue 6, 2010, Pages

Random graphs containing arbitrary distributions of subgraphs

Author keywords

[No Author keywords available]

Indexed keywords

ARBITRARY DISTRIBUTION; BOND PERCOLATION; NETWORK PROPERTIES; RANDOM GRAPH MODELS; RANDOM GRAPHS; REAL NETWORKS; SUBGRAPHS;

EID: 78651444167     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.82.066118     Document Type: Article
Times cited : (144)

References (31)
  • 9
    • 18744389789 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.89.208701
    • M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002). 10.1103/PhysRevLett. 89.208701
    • (2002) Phys. Rev. Lett. , vol.89 , pp. 208701
    • Newman, M.E.J.1
  • 11
    • 63649127232 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.102.128701
    • B. Karrer and M. E. J. Newman, Phys. Rev. Lett. 102, 128701 (2009). 10.1103/PhysRevLett.102.128701
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 128701
    • Karrer, B.1    Newman, M.E.J.2
  • 12
    • 0012535670 scopus 로고    scopus 로고
    • Oxford University Press, Oxford, 10.1093/acprof:oso/9780198506263.001. 0001
    • M. Penrose, Random Geometric Graphs (Oxford University Press, Oxford, 2003). 10.1093/acprof:oso/9780198506263.001.0001
    • (2003) Random Geometric Graphs
    • Penrose, M.1
  • 13
    • 42749099621 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.68.026121
    • M. E. J. Newman, Phys. Rev. E 68, 026121 (2003). 10.1103/PhysRevE.68. 026121
    • (2003) Phys. Rev. e , vol.68 , pp. 026121
    • Newman, M.E.J.1
  • 14
    • 33751543933 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.74.056114
    • M. A. Serrano and M. Boguñá, Phys. Rev. E 74, 056114 (2006). 10.1103/PhysRevE.74.056114
    • (2006) Phys. Rev. e , vol.74 , pp. 056114
    • Serrano, M.A.1    Boguñá, M.2
  • 15
    • 33751534549 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.74.056115
    • M. A. Serrano and M. Boguñá, Phys. Rev. E 74, 056115 (2006). 10.1103/PhysRevE.74.056115
    • (2006) Phys. Rev. e , vol.74 , pp. 056115
    • Serrano, M.A.1    Boguñá, M.2
  • 16
    • 33847133113 scopus 로고    scopus 로고
    • 10.1016/j.physa.2006.11.072
    • X. Shi, L. Adamic, and M. J. Strauss, Physica A 378, 33 (2007). 10.1016/j.physa.2006.11.072
    • (2007) Physica A , vol.378 , pp. 33
    • Shi, X.1    Adamic, L.2    Strauss, M.J.3
  • 18
    • 68649124583 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.103.058701
    • M. E. J. Newman, Phys. Rev. Lett. 103, 058701 (2009). 10.1103/PhysRevLett.103.058701
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 058701
    • Newman, M.E.J.1
  • 19
    • 70349974267 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.80.036107
    • J. P. Gleeson, Phys. Rev. E 80, 036107 (2009). 10.1103/PhysRevE.80.036107
    • (2009) Phys. Rev. e , vol.80 , pp. 036107
    • Gleeson, J.P.1
  • 20
    • 70449411707 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.80.046121
    • J. P. Gleeson and S. Melnik, Phys. Rev. E 80, 046121 (2009). 10.1103/PhysRevE.80.046121
    • (2009) Phys. Rev. e , vol.80 , pp. 046121
    • Gleeson, J.P.1    Melnik, S.2
  • 21
    • 77549087023 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.80.020901
    • J. C. Miller, Phys. Rev. E 80, 020901 (2009). 10.1103/PhysRevE.80.020901
    • (2009) Phys. Rev. e , vol.80 , pp. 020901
    • Miller, J.C.1
  • 24
    • 78651435995 scopus 로고    scopus 로고
    • An exception is the geometric random graph, in which clustering occurs naturally on account of the graph's being embedded in a Euclidean space of low dimension (usually two). Geometric graphs are, however, something of a special case, most real networks having no such low-dimension embedding.
    • An exception is the geometric random graph, in which clustering occurs naturally on account of the graph's being embedded in a Euclidean space of low dimension (usually two). Geometric graphs are, however, something of a special case, most real networks having no such low-dimension embedding.
  • 26
    • 78651446357 scopus 로고    scopus 로고
    • One needs an additional constraint to avoid pathological graphs with two (or even more) giant components. Consider an ensemble with two subgraphs, a cycle and a clique, and assume that the probability distribution is such that a vertex participates either in cycles or in cliques but not both. Then all graphs consist of a cycle part and a clique part that are disconnected from each other, so there could be two giant components, one composed of cycles and the other composed of cliques. To avoid this pathology, we impose the restriction that one should not be able to divide the roles into two sets such that every vertex and every subgraph only have roles from one of the sets.
    • One needs an additional constraint to avoid pathological graphs with two (or even more) giant components. Consider an ensemble with two subgraphs, a cycle and a clique, and assume that the probability distribution is such that a vertex participates either in cycles or in cliques but not both. Then all graphs consist of a cycle part and a clique part that are disconnected from each other, so there could be two giant components, one composed of cycles and the other composed of cliques. To avoid this pathology, we impose the restriction that one should not be able to divide the roles into two sets such that every vertex and every subgraph only have roles from one of the sets.
  • 30
    • 0020737985 scopus 로고
    • 10.1016/0025-5564(82)90036-0
    • P. Grassberger, Math. Biosci. 63, 157 (1983). 10.1016/0025-5564(82)90036- 0
    • (1983) Math. Biosci. , vol.63 , pp. 157
    • Grassberger, P.1
  • 31
    • 41349106348 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.66.016128
    • M. E. J. Newman, Phys. Rev. E 66, 016128 (2002). 10.1103/PhysRevE.66. 016128
    • (2002) Phys. Rev. e , vol.66 , pp. 016128
    • Newman, M.E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.