메뉴 건너뛰기




Volumn 58, Issue 6, 2010, Pages 1564-1576

A model of ICU bumping

Author keywords

[No Author keywords available]

Indexed keywords

ACCURATE MODELING; ARRIVAL PATTERNS; DISAGGREGATION; EXPONENTIAL DISTRIBUTIONS; GAUSS-SEIDEL ITERATIVE METHOD; HIGH DIMENSIONALITY; LENGTH OF STAY; MARKOV CHAIN; MARKOV CHAIN MODELS; QUALITY OF CARE;

EID: 78651415510     PISSN: 0030364X     EISSN: 15265463     Source Type: Journal    
DOI: 10.1287/opre.1100.0861     Document Type: Article
Times cited : (65)

References (27)
  • 1
    • 33750946588 scopus 로고    scopus 로고
    • A network flow approach to optimizing hospital bed capacity decisions
    • Akcali, E., M. J. Côtè, C. Lin. 2006. A network flow approach to optimizing hospital bed capacity decisions. Health Care Management Sci. 9(4) 391-404.
    • (2006) Health Care Management Sci. , vol.9 , Issue.4 , pp. 391-404
    • Akcali, E.1    Côtè, M.J.2    Lin., C.3
  • 4
    • 34249047689 scopus 로고    scopus 로고
    • Modeling the emergency cardiac in-patient flow: An application of queuing theory
    • De Bruin, A. M., A. C. van Rossum, M. C. Visser, G. M. Koole. 2007. Modeling the emergency cardiac in-patient flow: An application of queuing theory. Health Care Management Sci. 10(2) 125-137.
    • (2007) Health Care Management Sci. , vol.10 , Issue.2 , pp. 125-137
    • De Bruin, A.M.1    Van Rossum, A.C.2    Visser, M.C.3    Koole., G.M.4
  • 6
    • 0032900843 scopus 로고    scopus 로고
    • Does managed care affect the supply and use of ICU services?
    • Friedman, B., C. Steiner. 1999. Does managed care affect the supply and use of ICU services? Inquiry 36(1) 68-77.
    • (1999) Inquiry , vol.36 , Issue.1 , pp. 68-77
    • Friedman, B.1    Steiner., C.2
  • 7
    • 0037000040 scopus 로고    scopus 로고
    • How many hospital beds?
    • Green, L. V. 2002. How many hospital beds? Inquiry 39(4) 400-412.
    • (2002) Inquiry , vol.39 , Issue.4 , pp. 400-412
    • Green, L.V.1
  • 8
    • 0035011055 scopus 로고    scopus 로고
    • Strategies for cutting hospital beds: The impact on patient service
    • Green, L. V., V. Nguyen. 2001. Strategies for cutting hospital beds: The impact on patient service. Health Service Res. 36(2) 421-442.
    • (2001) Health Service Res. , vol.36 , Issue.2 , pp. 421-442
    • Green, L.V.1    Nguyen., V.2
  • 14
    • 0345580254 scopus 로고    scopus 로고
    • Analysis of capacity management of the intensive care unit in a hospital
    • Kim, S.-C., I. Horowitz, K. K. Young, T. A. Buckley. 1999. Analysis of capacity management of the intensive care unit in a hospital. Eur. J. Oper. Res. 115(1) 36-46.
    • (1999) Eur. J. Oper. Res. , vol.115 , Issue.1 , pp. 36-46
    • Kim, S.-C.1    Horowitz, I.2    Young, K.K.3    Buckley., T.A.4
  • 15
    • 33645513264 scopus 로고    scopus 로고
    • American association of critical-care nurses' national survey of facilities and units providing critical care
    • Kirchhoff, K. T., N. Dahl. 2006. American Association of Critical-care Nurses' national survey of facilities and units providing critical care. Amer. J. Critical Care 15(1) 13-28.
    • (2006) Amer. J. Critical Care , vol.15 , Issue.1 , pp. 13-28
    • Kirchhoff, K.T.1    Dahl., N.2
  • 16
    • 0027298174 scopus 로고
    • Variations in mortality and length of stay in intensive care units
    • Knaus, W. A., D. P. Wagner, J. E. Zimmerman, E. A. Draper. 1993. Variations in mortality and length of stay in intensive care units. Ann. Internal Medicine 118(10) 753-761.
    • (1993) Ann. Internal Medicine , vol.118 , Issue.10 , pp. 753-761
    • Knaus, W.A.1    Wagner, D.P.2    Zimmerman, J.E.3    Draper., E.A.4
  • 17
  • 19
    • 0033932726 scopus 로고    scopus 로고
    • What's in a day? Determining intensive care unit length of stay
    • Marik, P. E., L. Hedman. 2000. What's in a day? Determining intensive care unit length of stay. Critical Care Medicine 28(6) 2090-2093.
    • (2000) Critical Care Medicine , vol.28 , Issue.6 , pp. 2090-2093
    • Marik, P.E.1    Hedman., L.2
  • 21
    • 2142696506 scopus 로고    scopus 로고
    • Queuing theory accurately models the need for critical care resources
    • McManus, M. L., M. C. Long, A. Cooper, E. Litvak. 2004. Queuing theory accurately models the need for critical care resources. Anesthesiology 100(5) 1271-1276.
    • (2004) Anesthesiology , vol.100 , Issue.5 , pp. 1271-1276
    • McManus, M.L.1    Long, M.C.2    Cooper, A.3    Litvak., E.4
  • 23
    • 3142539413 scopus 로고    scopus 로고
    • Capacity expansion for random exponential demand growth with lead times
    • Ryan, S. M. 2004. Capacity expansion for random exponential demand growth with lead times. Management Sci. 50(6) 740-748.
    • (2004) Management Sci. , vol.50 , Issue.6 , pp. 740-748
    • Ryan, S.M.1
  • 24
    • 0029780380 scopus 로고    scopus 로고
    • Can clinicians predict ICU length of stay following cardiac surgery? Canadian J
    • Tu, J. V., C. D. Mazer. 1996. Can clinicians predict ICU length of stay following cardiac surgery? Canadian J. Anesthesia 43(8) 789-794.
    • (1996) Anesthesia , vol.43 , Issue.8 , pp. 789-794
    • Tu, J.V.1    Mazer., C.D.2
  • 25
    • 1942500492 scopus 로고    scopus 로고
    • Can the experienced ICU physician predict ICU length of stay and outcome better than less experienced colleagues?
    • Vicente, F. G., F. P. Lomar, C. Mélot, J.-L. Vincent. 2004. Can the experienced ICU physician predict ICU length of stay and outcome better than less experienced colleagues? Intensive Care Medicine 30(4) 655-659.
    • (2004) Intensive Care Medicine , vol.30 , Issue.4 , pp. 655-659
    • Vicente, F.G.1    Lomar, F.P.2    Mélot, C.3    Vincent., J.-L.4
  • 26
    • 0030865765 scopus 로고    scopus 로고
    • Analyzing intensive care unit length of stay data: Problems and possible solutions
    • Weissman, C. 1997. Analyzing intensive care unit length of stay data: Problems and possible solutions. Critical Care Medicine 25(9) 1594-1600.
    • (1997) Critical Care Medicine , vol.25 , Issue.9 , pp. 1594-1600
    • Weissman, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.