-
7
-
-
0033717788
-
-
10.1088/0953-8984/12/24/302
-
A. Lang, C. N. Likos, M. Watzlawek, and H. Lowën, J. Phys.: Condens. Matter 12, 5087 (2000). 10.1088/0953-8984/12/24/302
-
(2000)
J. Phys.: Condens. Matter
, vol.12
, pp. 5087
-
-
Lang, A.1
Likos, C.N.2
Watzlawek, M.3
Lowën, H.4
-
8
-
-
0035883479
-
-
10.1063/1.1394922
-
F. H. Stillinger, J. Chem. Phys. 115, 5208 (2001). 10.1063/1.1394922
-
(2001)
J. Chem. Phys.
, vol.115
, pp. 5208
-
-
Stillinger, F.H.1
-
9
-
-
33144486158
-
-
10.1103/PhysRevLett.96.045701
-
B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N. Likos, Phys. Rev. Lett. 96, 045701 (2006). 10.1103/PhysRevLett.96.045701
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 045701
-
-
Mladek, B.M.1
Gottwald, D.2
Kahl, G.3
Neumann, M.4
Likos, C.N.5
-
10
-
-
34250831282
-
-
10.1090/S0894-0347-06-00546-7
-
H. Cohn and A. Kumar, J. Am. Math. Soc. 20, 99 (2007). 10.1090/S0894-0347-06-00546-7
-
(2007)
J. Am. Math. Soc.
, vol.20
, pp. 99
-
-
Cohn, H.1
Kumar, A.2
-
11
-
-
54749141939
-
-
10.1103/PhysRevE.78.036706
-
S. Gravel and V. Elser, Phys. Rev. E 78, 036706 (2008). 10.1103/PhysRevE.78.036706
-
(2008)
Phys. Rev. e
, vol.78
, pp. 036706
-
-
Gravel, S.1
Elser, V.2
-
12
-
-
79051470505
-
-
10.1209/0295-5075/78/46004
-
M. A. Glaser, G. M. Grason, R. D. Kamien, A. A. Kosmrlj, C. D. Santangelo, and P. Ziherl, EPL 78, 46004 (2007). 10.1209/0295-5075/78/46004
-
(2007)
EPL
, vol.78
, pp. 46004
-
-
Glaser, M.A.1
Grason, G.M.2
Kamien, R.D.3
Kosmrlj, A.A.4
Santangelo, C.D.5
Ziherl, P.6
-
20
-
-
0037769863
-
-
10.4007/annals.2003.157.689
-
H. Cohn and N. Elkies, Ann. Math. 157, 689 (2003). 10.4007/annals.2003. 157.689
-
(2003)
Ann. Math.
, vol.157
, pp. 689
-
-
Cohn, H.1
Elkies, N.2
-
21
-
-
22044441063
-
-
10.4007/annals.2005.162.1065
-
T. C. Hales, Ann. Math. 162, 1065 (2005). 10.4007/annals.2005.162.1065
-
(2005)
Ann. Math.
, vol.162
, pp. 1065
-
-
Hales, T.C.1
-
22
-
-
71649112588
-
-
10.4007/annals.2009.170.1003
-
H. Cohn and A. Kumar, Ann. Math. 170, 1003 (2009). 10.4007/annals.2009. 170.1003
-
(2009)
Ann. Math.
, vol.170
, pp. 1003
-
-
Cohn, H.1
Kumar, A.2
-
24
-
-
78651357382
-
-
The support of a function is the set of points where the function is not zero. A function has compact support if it is zero outside a compact set.
-
The support of a function is the set of points where the function is not zero. A function has compact support if it is zero outside a compact set.
-
-
-
-
25
-
-
0036722531
-
-
10.1080/07408170208928915
-
D. Adickes, IIE Trans. 34, 823 (2002). 10.1080/07408170208928915
-
(2002)
IIE Trans.
, vol.34
, pp. 823
-
-
Adickes, D.1
-
26
-
-
34748877313
-
-
10.1088/0264-9381/24/19/S11
-
R. Prix, Class. Quantum Grav. 24, S481 (2007). 10.1088/0264-9381/24/19/ S11
-
(2007)
Class. Quantum Grav.
, vol.24
, pp. 481
-
-
Prix, R.1
-
30
-
-
0003628866
-
-
10.1063/1.1730361; this paper considered void nearest-neighbor functions for the special case of identical hard spheres in equilibrium Gibbs ensemble.
-
H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31, 369 (1959) 10.1063/1.1730361
-
(1959)
J. Chem. Phys.
, vol.31
, pp. 369
-
-
Reiss, H.1
Frisch, H.L.2
Lebowitz, J.L.3
-
31
-
-
0000983452
-
-
10.1103/PhysRevA.41.2059. This paper considered two types of nearest-neighbor functions void and particle quantities for a general "nonequilibrium" case of identical of spheres with arbitrary interactions, e.g., spheres with variable interpenetrability that interact with repulsive and attractive forces.
-
S. Torquato, B. Lu, and J. Rubinstein, Phys. Rev. A 41, 2059 (1990) 10.1103/PhysRevA.41.2059
-
(1990)
Phys. Rev. A
, vol.41
, pp. 2059
-
-
Torquato, S.1
Lu, B.2
Rubinstein, J.3
-
32
-
-
78651360785
-
-
F [i.e., without the factor of (2π) d], in which case self-duality is defined with respect to unit density; see Ref
-
F [i.e., without the factor of (2 π) d], in which case self-duality is defined with respect to unit density; see Ref..
-
-
-
-
33
-
-
78651377848
-
-
d. This is the common notation for both objects, and therefore we adhere to this convention.
-
d. This is the common notation for both objects, and therefore we adhere to this convention.
-
-
-
-
35
-
-
70350075655
-
-
10.1103/PhysRevE.80.041104. In these papers, the asphericity of a nonspherical solid body is defined to be ratio of the circumradius to the inradius of the circumsphere and insphere of the nonspherical particle, respectively, which provides a measure of the spherical asymmetry of a solid body. An asphericity equal to unity corresponds to a perfect sphere.
-
S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009) 10.1103/PhysRevE.80.041104
-
(2009)
Phys. Rev. e
, vol.80
, pp. 041104
-
-
Torquato, S.1
Jiao, Y.2
-
36
-
-
0004279601
-
-
Cambridge University Press, Cambridge, England
-
C. A. Rogers, Packing and Covering (Cambridge University Press, Cambridge, England, 1964).
-
(1964)
Packing and Covering
-
-
Rogers, C.A.1
-
41
-
-
0001926808
-
-
10.1007/BF02392553
-
J. Beck, Acta Math. 159, 1 (1987). 10.1007/BF02392553
-
(1987)
Acta Math.
, vol.159
, pp. 1
-
-
Beck, J.1
-
45
-
-
21744437271
-
-
10.1090/S0002-9939-97-03872-0
-
P. Chiu, Proc. Am. Math. Soc. 125, 723 (1997). 10.1090/S0002-9939-97- 03872-0
-
(1997)
Proc. Am. Math. Soc.
, vol.125
, pp. 723
-
-
Chiu, P.1
-
47
-
-
0020100081
-
-
10.1109/TIT.1982.1056490
-
P. L. Zador, IEEE Trans. Inf. Theory 28, 139 (1982). 10.1109/TIT.1982. 1056490
-
(1982)
IEEE Trans. Inf. Theory
, vol.28
, pp. 139
-
-
Zador, P.L.1
-
49
-
-
6144273465
-
-
10.1103/PhysRevLett.74.2156
-
S. Torquato, Phys. Rev. Lett. 74, 2156 (1995). 10.1103/PhysRevLett.74. 2156
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 2156
-
-
Torquato, S.1
-
51
-
-
78651369478
-
-
V (0) =2ρ.
-
V (0) = 2 ρ.
-
-
-
-
53
-
-
78651368462
-
-
V (R); see the text for further explanation.
-
V (R); see the text for further explanation.
-
-
-
-
54
-
-
0039823454
-
-
10.1063/1.1726548
-
B. Widom, J. Chem. Phys. 44, 3888 (1966). 10.1063/1.1726548
-
(1966)
J. Chem. Phys.
, vol.44
, pp. 3888
-
-
Widom, B.1
-
56
-
-
0019186347
-
-
10.1016/0022-5193(80)90358-6
-
J. Feder, J. Theor. Biol. 87, 237 (1980). 10.1016/0022-5193(80)90358-6
-
(1980)
J. Theor. Biol.
, vol.87
, pp. 237
-
-
Feder, J.1
-
57
-
-
0001525706
-
-
10.1103/PhysRevA.38.522
-
D. W. Cooper, Phys. Rev. A 38, 522 (1988). 10.1103/PhysRevA.38.522
-
(1988)
Phys. Rev. A
, vol.38
, pp. 522
-
-
Cooper, D.W.1
-
58
-
-
78651368986
-
-
note
-
Note that leading-order term in either Eq. or Eq. involving 1 / 2 d is a dominant dimensional contribution for RSA saturation densities in relatively low dimensions for good theoretical reasons. The fact that this term does not appear in the upper bound is another reason why it could only be realizable by RSA saturated packings in high dimensions. If true, then the d ln (d) and d ln [ln (d)] terms in Eq. are high-dimensional asymptotic corrections.
-
-
-
-
59
-
-
78651377014
-
-
note
-
Observe that the extrapolation of the conservative fit function to d = 24 gives a density that is about 3.7% larger than that predicted by Eq.. This percentage difference between the two fit functions decreases as d decreases to d = 7.
-
-
-
-
60
-
-
78651379077
-
-
note
-
This includes the operational ground-based Laser Interferometer Gravitational-Wave Observatory and the space-based Laser Interferometer Space Antenna, which is expected to be operational in the next six years. See the link "Astro2010: The Astronomy and Astrophysics Decadal Survey."
-
-
-
-
63
-
-
84945618459
-
-
10.1080/00268976300101411
-
M. J. D. Powell, Mol. Phys. 7, 591 (1964). 10.1080/00268976300101411
-
(1964)
Mol. Phys.
, vol.7
, pp. 591
-
-
Powell, M.J.D.1
|