메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages 3-12

Intensity inhomogeneity compensation and segmentation of MR brain images using hybrid c-means clustering models

Author keywords

Context dependent filter; Fuzzy c means clustering; Hybrid c means clustering; Image segmentation; Intensity inhomogeneity; Magnetic resonance imaging; Morphological operations

Indexed keywords

BRAIN MAPPING; FUZZY FILTERS; MAGNETIC RESONANCE IMAGING; MATHEMATICAL MORPHOLOGY; MEDICAL PROBLEMS;

EID: 78651356509     PISSN: 17468094     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bspc.2010.08.004     Document Type: Conference Paper
Times cited : (32)

References (42)
  • 1
    • 24344477133 scopus 로고    scopus 로고
    • An intelligent modified fuzzy c-means based algorithm for bias field estimation and segmentation of brain MRI
    • M.Y. Siyal, and L. Yu An intelligent modified fuzzy c-means based algorithm for bias field estimation and segmentation of brain MRI Pattern Recognition Letters 26 13 2005 2052 2062
    • (2005) Pattern Recognition Letters , vol.26 , Issue.13 , pp. 2052-2062
    • Siyal, M.Y.1    Yu, L.2
  • 4
    • 33847774807 scopus 로고    scopus 로고
    • A review of methods for correction of intensity inhomogeneity in MRI
    • U. Vovk, F. Pernuš, and B. Likar A review of methods for correction of intensity inhomogeneity in MRI IEEE Transactions on Medical Imaging 26 3 2007 405 421
    • (2007) IEEE Transactions on Medical Imaging , vol.26 , Issue.3 , pp. 405-421
    • Vovk, U.1    Pernuš, F.2    Likar, B.3
  • 5
    • 0032034233 scopus 로고    scopus 로고
    • Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction
    • B.H. Brinkmann, A. Manduca, and R.A. Robb Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction IEEE Transactions on Medical Imaging 17 2 1998 161 171
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , Issue.2 , pp. 161-171
    • Brinkmann, B.H.1    Manduca, A.2    Robb, R.A.3
  • 7
    • 34047224433 scopus 로고    scopus 로고
    • Coil sensitivity estimation for optimal SNR reconstruction and intensity inhomogeneity correction in phased array MR imaging
    • P. Vemuri, E.G. Kholmovski, D.L. Parker, and B.E. Chapman Coil sensitivity estimation for optimal SNR reconstruction and intensity inhomogeneity correction in phased array MR imaging Lecture Notes in Computer Science (IPMI'05) 3565 2005 603 614
    • (2005) Lecture Notes in Computer Science (IPMI'05) , vol.3565 , pp. 603-614
    • Vemuri, P.1    Kholmovski, E.G.2    Parker, D.L.3    Chapman, B.E.4
  • 9
    • 0034763204 scopus 로고    scopus 로고
    • Improved high resolution MR imaging for surface coils using automated intensity non-uniformity correction: Feasibility study in the orbit
    • E.A. Vokurka, N.A. Watson, Y. Watson, N.A. Thacker, and A. Jackson Improved high resolution MR imaging for surface coils using automated intensity non-uniformity correction: feasibility study in the orbit Journal of Magnetic Resonance Imaging 14 5 2001 540 546
    • (2001) Journal of Magnetic Resonance Imaging , vol.14 , Issue.5 , pp. 540-546
    • Vokurka, E.A.1    Watson, N.A.2    Watson, Y.3    Thacker, N.A.4    Jackson, A.5
  • 13
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Y. Zhang, M. Brady, and S. Smith Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm IEEE Transactions on Medical Imaging 20 1 2001 45 57
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 14
    • 0027275316 scopus 로고
    • Review of MR image segmentation techniques using pattern recognition
    • J.C. Bezdek, L.O. Hall, and L.P. Clarke Review of MR image segmentation techniques using pattern recognition Medical Physics 20 4 1993 1033 1048
    • (1993) Medical Physics , vol.20 , Issue.4 , pp. 1033-1048
    • Bezdek, J.C.1    Hall, L.O.2    Clarke, L.P.3
  • 15
    • 0033181293 scopus 로고    scopus 로고
    • Adaptive fuzzy segmentation of magnetic resonance images
    • D.L. Pham, and J.L. Prince Adaptive fuzzy segmentation of magnetic resonance images IEEE Transactions on Medical Imaging 18 9 1999 737 752
    • (1999) IEEE Transactions on Medical Imaging , vol.18 , Issue.9 , pp. 737-752
    • Pham, D.L.1    Prince, J.L.2
  • 16
    • 78651363983 scopus 로고    scopus 로고
    • Nonparametric segmentation of multispectral MR images incorporating spatial and intensity information
    • J. Derganc, B. Likar, and F. Pernuš Nonparametric segmentation of multispectral MR images incorporating spatial and intensity information Progress in Biomedical Optics and Imaging 3 1 2002 391 400
    • (2002) Progress in Biomedical Optics and Imaging , vol.3 , Issue.1 , pp. 391-400
    • Derganc, J.1    Likar, B.2    Pernuš, F.3
  • 17
    • 0031987382 scopus 로고    scopus 로고
    • A nonparamtertic method for automatic correction of intensity nonuniformities
    • J.G. Sled, A.P. Zijdenbos, and A.C. Evans A nonparamtertic method for automatic correction of intensity nonuniformities IEEE Transactions on Medical Imaging 17 1 1998 87 97
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 18
    • 0035544623 scopus 로고    scopus 로고
    • Retrospective correction of MR intensity inhomogeneity by information minimization
    • B. Likar, A. Viergever, and F. Pernuš Retrospective correction of MR intensity inhomogeneity by information minimization IEEE Transactions on Medical Imaging 20 12 2001 1398 1410
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.12 , pp. 1398-1410
    • Likar, B.1    Viergever, A.2    Pernuš, F.3
  • 19
    • 23844486768 scopus 로고    scopus 로고
    • Correction of bias field in MR images using singularity function analysis
    • J. Luo, Y. Zhu, P. Clarysse, and I. Magnin Correction of bias field in MR images using singularity function analysis IEEE Transactions on Medical Imaging 24 8 2005 1067 1085
    • (2005) IEEE Transactions on Medical Imaging , vol.24 , Issue.8 , pp. 1067-1085
    • Luo, J.1    Zhu, Y.2    Clarysse, P.3    Magnin, I.4
  • 23
    • 22544441113 scopus 로고    scopus 로고
    • Partial volume segmentation of brain magnetic resonace images based on maximum a posteriori probability
    • X. Li, L.H. Li, H.B. Lu, and Z.G. Liang Partial volume segmentation of brain magnetic resonace images based on maximum a posteriori probability Medical Physics 32 7 2005 2337 2345
    • (2005) Medical Physics , vol.32 , Issue.7 , pp. 2337-2345
    • Li, X.1    Li, L.H.2    Lu, H.B.3    Liang, Z.G.4
  • 24
    • 0141857203 scopus 로고    scopus 로고
    • An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
    • A.W.C. Liew, and Y. Hong An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation IEEE Transactions on Medical Imaging 22 9 2003 1063 1075
    • (2003) IEEE Transactions on Medical Imaging , vol.22 , Issue.9 , pp. 1063-1075
    • Liew, A.W.C.1    Hong, Y.2
  • 31
    • 0037410688 scopus 로고    scopus 로고
    • Suppressed fuzzy c-means clustering algorithm
    • J.L. Fan, W.Z. Zhen, and W.X. Xie Suppressed fuzzy c-means clustering algorithm Pattern Recognition Letters 24 9-10 2003 1607 1612
    • (2003) Pattern Recognition Letters , vol.24 , Issue.910 , pp. 1607-1612
    • Fan, J.L.1    Zhen, W.Z.2    Xie, W.X.3
  • 32
    • 77952848965 scopus 로고    scopus 로고
    • Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: A study on the competition in c-means clustering models
    • L. Szilágyi, S.M. Szilágyi, and Z. Benyó Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models Soft Computing 14 5 2010 495 505
    • (2010) Soft Computing , vol.14 , Issue.5 , pp. 495-505
    • Szilágyi, L.1    Szilágyi, S.M.2    Benyó, Z.3
  • 33
    • 0000586827 scopus 로고
    • Characterization and detection of noise in clustering
    • R.N. Davé Characterization and detection of noise in clustering Pattern Recognition Letters 12 11 1991 657 664
    • (1991) Pattern Recognition Letters , vol.12 , Issue.11 , pp. 657-664
    • Davé, R.N.1
  • 34
    • 0033735084 scopus 로고    scopus 로고
    • The fuzzy c+2 means: Solving the ambiguity rejection in clustering
    • M. Menard, C. Damko, and P. Loonis The fuzzy c+2 means: solving the ambiguity rejection in clustering Pattern Recognition 33 7 2000 1219 1237
    • (2000) Pattern Recognition , vol.33 , Issue.7 , pp. 1219-1237
    • Menard, M.1    Damko, C.2    Loonis, P.3
  • 36
  • 37
    • 71949112751 scopus 로고    scopus 로고
    • Intensity inhomogeneity correction and segmentation of magnetic resonance images using a multi-stage fuzzy clustering approach
    • S.M. Szilágyi, L. Szilágyi, D. Iclnzan, L. Dávid, A. Frigy, and Z. Benyó Intensity inhomogeneity correction and segmentation of magnetic resonance images using a multi-stage fuzzy clustering approach Neural Network World 19 5 2009 513 528
    • (2009) Neural Network World , vol.19 , Issue.5 , pp. 513-528
    • Szilágyi, S.M.1    Szilágyi, L.2    Iclnzan, D.3    Dávid, L.4    Frigy, A.5    Benyó, Z.6
  • 40
    • 36948999941 scopus 로고    scopus 로고
    • CA: University of California, School of Information and Computer Science
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2007, Available at: http://www.ics.uci.edu/mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository. Irvine
    • Asuncion, A.1    Newman, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.