-
2
-
-
0009889408
-
A short proof that a subquadratic isoperimetric inequality implies a linear one
-
MR1322192 96b:20046
-
B. H. Bowditch. A short proof that a subquadratic isoperimetric inequality implies a linear one. Michigan Math. J., 42 (1):103-107, 1995. MR1322192 (96b:20046)
-
(1995)
Michigan Math. J.
, vol.42
, Issue.1
, pp. 103-107
-
-
Bowditch, B.H.1
-
3
-
-
0001540595
-
On random graphs. I
-
MR0120167 22:10924
-
P. Erdos and A. Rényi. On random graphs. I. Publ. Math. Debrecen, 6:290-297, 1959. MR0120167 (22:10924)
-
(1959)
Publ. Math. Debrecen
, vol.6
, pp. 290-297
-
-
Erdos, P.1
Rényi, A.2
-
4
-
-
13744252028
-
Every monotone graph property has a sharp threshold
-
MR1371123 97e:05172
-
Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124 (10):2993-3002, 1996. MR1371123 (97e:05172)
-
(1996)
Proc. Amer. Math. Soc.
, vol.124
, Issue.10
, pp. 2993-3002
-
-
Friedgut, E.1
Kalai, G.2
-
6
-
-
0002874575
-
Asymptotic invariants of infinite groups
-
Cambridge Univ. Press, Cambridge, MR1253544 95m:20041
-
M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages 1-295. Cambridge Univ. Press, Cambridge, 1993. MR1253544 (95m:20041)
-
(1993)
Geometric Group Theory, Vol. 2 (Sussex, 1991), Volume 182 of London Math. Soc. Lecture Note Ser.
, pp. 1-295
-
-
Gromov, M.1
-
7
-
-
0004193355
-
-
Cambridge University Press, Cambridge, MR1867354 2002k:55001
-
Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002. MR1867354 (2002k:55001)
-
(2002)
Algebraic Topology
-
-
Hatcher, A.1
-
8
-
-
33750833972
-
The neighborhood complex of a random graph
-
MR2293099 2008a:05247
-
Matthew Kahle. The neighborhood complex of a random graph. J. Combin. Theory Ser. A, 114 (2):380-387, 2007. MR2293099 (2008a:05247)
-
(2007)
J. Combin. Theory Ser. A
, vol.114
, Issue.2
, pp. 380-387
-
-
Kahle, M.1
-
9
-
-
62149114733
-
Topology of random clique complexes
-
MR2510573 2010h:05276
-
Matthew Kahle. Topology of random clique complexes. Discrete Math., 309 (6):1658-1671, 2009. MR2510573 (2010h:05276)
-
(2009)
Discrete Math.
, vol.309
, Issue.6
, pp. 1658-1671
-
-
Kahle, M.1
-
10
-
-
33749322505
-
Homological connectivity of random 2-complexes
-
MR2260850 2007i:55004
-
Nathan Linial and Roy Meshulam. Homological connectivity of random 2-complexes. Combinatorica, 26 (4):475-487, 2006. MR2260850 (2007i:55004)
-
(2006)
Combinatorica
, vol.26
, Issue.4
, pp. 475-487
-
-
Linial, N.1
Meshulam, R.2
-
11
-
-
67649109197
-
Homological connectivity of random κ-dimensional complexes
-
MR2504405 2010g:60015
-
R. Meshulam and N. Wallach. Homological connectivity of random κ-dimensional complexes. Random Structures Algorithms, 34 (3):408-417, 2009. MR2504405 (2010g:60015)
-
(2009)
Random Structures Algorithms
, vol.34
, Issue.3
, pp. 408-417
-
-
Meshulam, R.1
Wallach, N.2
-
13
-
-
0009949324
-
An algorithm detecting hyperbolicity
-
Amer. Math. Soc., Providence, RI, MR1364185 96k:20075
-
P. Papasoglu. An algorithm detecting hyperbolicity. In Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994), volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 193-200. Amer. Math. Soc., Providence, RI, 1996. MR1364185 (96k:20075)
-
(1996)
Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994), Volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci.
, pp. 193-200
-
-
Papasoglu, P.1
-
14
-
-
33646426398
-
Topological characteristics of random triangulated surfaces
-
MR2213112 2007d:52019
-
Nicholas Pippenger and Kristin Schleich. Topological characteristics of random triangulated surfaces. Random Structures Algorithms, 28 (3):247-288, 2006. MR2213112 (2007d:52019)
-
(2006)
Random Structures Algorithms
, vol.28
, Issue.3
, pp. 247-288
-
-
Pippenger, N.1
Schleich, K.2
-
15
-
-
0042853323
-
Property (T) and Kazhdan constants for discrete groups
-
MR1995802 2004m:20079
-
A. Żuk. Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal., 13 (3):643-670, 2003. MR1995802 (2004m:20079)
-
(2003)
Geom. Funct. Anal.
, vol.13
, Issue.3
, pp. 643-670
-
-
Zuk, A.1
|