-
1
-
-
84966244974
-
-
Reimer, Berlin: Jahresber. der Deutschen Mathematiker-Vereinigung III, 1894
-
Brill, A., and Noether, M., “ Die Entwicklung der Theorie der algebraischen Funktionen in aelterer und neuerer Zeit ”. 1892–93. Reimer, Berlin:Jahresber. der Deutschen Mathematiker-Vereinigung III, 1894.
-
Die Entwicklung der Theorie der algebraischen Funktionen in aelterer und neuerer Zeit
, pp. 1892-1893
-
-
Brill, A.1
Noether, M.2
-
2
-
-
0001747368
-
Uniqueness of a limit cycle for a predator-prey system
-
Cheng, K.-S., 1981. Uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal., 12:541–548.
-
(1981)
SIAM J. Math. Anal.
, vol.12
, pp. 541-548
-
-
Cheng, K.-S.1
-
4
-
-
0024435736
-
Quiescence as an explanation of Gompertzian tumor growth
-
Gyllenberg, M., and Webb, G. F., 1989. Quiescence as an explanation of Gompertzian tumor growth. Growth Develop. and Aging, 53:25–33.
-
(1989)
Growth Develop. and Aging
, vol.53
, pp. 25-33
-
-
Gyllenberg, M.1
Webb, G.F.2
-
5
-
-
38849193403
-
Quiescent phases and stability
-
Hadeler, K. P., 2007. Quiescent phases and stability. Lin. Alg. Appl., 428:1620–1627.
-
(2007)
Lin. Alg. Appl.
, vol.428
, pp. 1620-1627
-
-
Hadeler, K.P.1
-
6
-
-
11844264682
-
Spatial dynamics of the diffusive logistic equation with a sedentary compartment
-
Hadeler, K. P., and Lewis, M. A., 2002. Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Can. Appl. Math. Quart., 10:473–499.
-
(2002)
Can. Appl. Math. Quart.
, vol.10
, pp. 473-499
-
-
Hadeler, K.P.1
Lewis, M.A.2
-
7
-
-
38849140933
-
Coupled dynamics and quiescent states
-
Berlin: Springer
-
Hadeler, K. P., and Hillen, T., 2007. “ Coupled dynamics and quiescent states ”. In Math Everywhere, 7–23. Berlin:Springer.
-
(2007)
Math Everywhere
, pp. 7-23
-
-
Hadeler, K.P.1
Hillen, T.2
-
8
-
-
0242710950
-
Transport equations with resting phases
-
Hillen, T., 2003. Transport equations with resting phases. Eur. J. Appl. Math., 14:613–636.
-
(2003)
Eur. J. Appl. Math.
, vol.14
, pp. 613-636
-
-
Hillen, T.1
-
9
-
-
38849090649
-
Hyperbolic systems and transport equations in Mathematical Biology
-
Warnecke G., (ed), Springer
-
Hillen, H., and Hadeler, K. P., 2005. “ Hyperbolic systems and transport equations in Mathematical Biology ”. In Analysis and Numerics for Conservation Laws, Edited by:Warnecke, G., 257–279. Springer.
-
(2005)
Analysis and Numerics for Conservation Laws
, pp. 257-279
-
-
Hillen, H.1
Hadeler, K.P.2
-
10
-
-
0002366911
-
The functional response of predators to prey density and its role in mimicry and population regulation
-
Holling, C. S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Ent. Soc. Can., 45:65
-
(1965)
Mem. Ent. Soc. Can.
, vol.45
, pp. 65
-
-
Holling, C.S.1
-
11
-
-
0028165367
-
Quiescence and transient growth dynamics in chemostat models
-
Jäger, W., Krömker, S., and Tang, B., 1994. Quiescence and transient growth dynamics in chemostat models. Math. Biosci., 119:225–239.
-
(1994)
Math. Biosci.
, vol.119
, pp. 225-239
-
-
Jäger, W.1
Krömker, S.2
Tang, B.3
-
12
-
-
0001939137
-
Sulla teoria di Volterra della lotta per la esistenza
-
Kolmogorov, A. N., 1936. Sulla teoria di Volterra della lotta per la esistenza. Giorn. Ist. Ital. Attuar., 7:74–80.
-
(1936)
Giorn. Ist. Ital. Attuar.
, vol.7
, pp. 74-80
-
-
Kolmogorov, A.N.1
-
13
-
-
0242631757
-
Biological invasion of an organism with separate mobile and stationary states: Modeling and analysis
-
Lewis, M. A., and Schmitz, G., 1996. Biological invasion of an organism with separate mobile and stationary states:modeling and analysis. Forma, 11:1–25.
-
(1996)
Forma
, vol.11
, pp. 1-25
-
-
Lewis, M.A.1
Schmitz, G.2
-
14
-
-
33746406764
-
A resource-based model of microbial quiescence
-
Malik, T., and Smith, H. L., 2006. A resource-based model of microbial quiescence. J. Math. Biol., 53:231–252.
-
(2006)
J. Math. Biol.
, vol.53
, pp. 231-252
-
-
Malik, T.1
Smith, H.L.2
-
15
-
-
0036584790
-
Stabilizing dispersal delays in predator-prey metapopulation models
-
Neubert, M. G., Klepac, P., and van den Driessche, P., 2002. Stabilizing dispersal delays in predator-prey metapopulation models. Theor. Popul. Biol., 61:339–347.
-
(2002)
Theor. Popul. Biol.
, vol.61
, pp. 339-347
-
-
Neubert, M.G.1
Klepac, P.2
van den Driessche, P.3
-
16
-
-
11844261462
-
Persistence, spread and the drift paradox
-
Pachepsky, E., Lutscher, F., Nisbet, R. M., and Lewis, M. A., 2005. Persistence, spread and the drift paradox. Theor. Popul. Biol., 67:61–73.
-
(2005)
Theor. Popul. Biol.
, vol.67
, pp. 61-73
-
-
Pachepsky, E.1
Lutscher, F.2
Nisbet, R.M.3
Lewis, M.A.4
-
18
-
-
0015243940
-
Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time
-
Rosenzweig, M. L., 1971. Paradox of enrichment:destabilization of exploitation ecosystems in ecological time. Science, 171:385–387.
-
(1971)
Science
, vol.171
, pp. 385-387
-
-
Rosenzweig, M.L.1
-
19
-
-
0001524523
-
Graphical representation and stability conditions of predator-prey interactions
-
Rosenzweig, M. L., and MacArthur, R. H., 1963. Graphical representation and stability conditions of predator-prey interactions. Amer. Nat., 97:209–223.
-
(1963)
Amer. Nat.
, vol.97
, pp. 209-223
-
-
Rosenzweig, M.L.1
MacArthur, R.H.2
-
20
-
-
13544267423
-
Some remarks on matrix stability with applications to Turing instability
-
Satnoianu, R. A., and van den Driessche, P., 2005. Some remarks on matrix stability with applications to Turing instability. Lin. Alg. Appl., 398:69–74.
-
(2005)
Lin. Alg. Appl.
, vol.398
, pp. 69-74
-
-
Satnoianu, R.A.1
van den Driessche, P.2
|