-
1
-
-
20844435854
-
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
-
G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng., 17(6):734-749, 2005.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.6
, pp. 734-749
-
-
Adomavicius, G.1
Tuzhilin, A.2
-
2
-
-
33750341480
-
Improving web search ranking by incorporating user behavior information
-
New York, NY, USA ACM Press
-
E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user behavior information. In SIGIR '06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pages 19-26, New York, NY, USA, 2006. ACM Press.
-
(2006)
SIGIR '06: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 19-26
-
-
Agichtein, E.1
Brill, E.2
Dumais, S.3
-
3
-
-
0031103679
-
Fab: Content-based, collaborative recommendation
-
M. Balabanovic and Y. Shoham. Fab: Content-based, collaborative recommendation. Communications of the ACM, 40(3):66-72, 1997.
-
(1997)
Communications of the ACM
, vol.40
, Issue.3
, pp. 66-72
-
-
Balabanovic, M.1
Shoham, Y.2
-
4
-
-
77954593787
-
Collaborative filtering for orkut communities: Discovery of user latent behavior
-
ACM
-
W. Chen, J.-C. Chu, J. Luan, H. Bai, Y. Wang, and E. Y. Chang. Collaborative filtering for orkut communities: discovery of user latent behavior. In WWW '09: Proceeding of the 18th International World, Wide Web Conference, pages 681-690. ACM, 2009.
-
(2009)
WWW '09: Proceeding of the 18th International World, Wide Web Conference
, pp. 681-690
-
-
Chen, W.1
Chu, J.-C.2
Luan, J.3
Bai, H.4
Wang, Y.5
Chang, E.Y.6
-
6
-
-
1642374016
-
Combining content-based and collaborative filters in an online newspaper
-
August
-
M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. Combining content-based and collaborative filters in an online newspaper. In Proceedings of ACM SIGIR Workshop on Recommender Systems, August 1999.
-
(1999)
Proceedings of ACM SIGIR Workshop on Recommender Systems
-
-
Claypool, M.1
Gokhale, A.2
Miranda, T.3
Murnikov, P.4
Netes, D.5
Sartin, M.6
-
7
-
-
0018546040
-
Lower rank approximation of matrices by least squares with any choice of weights
-
K. R. Gabriel and S. Zamir. Lower rank approximation of matrices by least squares with any choice of weights. Technometrics, 21(4):489-498, 1979.
-
(1979)
Technometrics
, vol.21
, Issue.4
, pp. 489-498
-
-
Gabriel, K.R.1
Zamir, S.2
-
8
-
-
84976668719
-
Using collaborative filtering to weave an information tapestry
-
D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.
-
(1992)
Communications of the ACM
, vol.35
, Issue.12
, pp. 61-70
-
-
Goldberg, D.1
Nichols, D.2
Oki, B.M.3
Terry, D.4
-
13
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, 2009.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
14
-
-
0037252945
-
Amazon.com recommendations: Item-to-item collaborative filtering
-
Jan/Feb
-
G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76-80, Jan/Feb 2003.
-
(2003)
IEEE Internet Computing
, vol.7
, Issue.1
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
16
-
-
67149083078
-
One-class collaborative filtering
-
R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. M. Lukose, M. Scholz, and Q. Yang. One-class collaborative filtering. In IEEE International Conference on Data Mining (ICDM 2008), pages 502-511, 2008.
-
(2008)
IEEE International Conference on Data Mining (ICDM 2008)
, pp. 502-511
-
-
Pan, R.1
Zhou, Y.2
Cao, B.3
Liu, N.N.4
Lukose, R.M.5
Scholz, M.6
Yang, Q.7
-
17
-
-
0012253296
-
Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments
-
A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 437-444, 2001.
-
(2001)
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
, pp. 437-444
-
-
Popescul, A.1
Ungar, L.2
Pennock, D.3
Lawrence, S.4
-
18
-
-
0036989477
-
Methods and metrics for cold-start recommendations
-
New York, NY, USA ACM Press
-
A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pages 253-260, New York, NY, USA, 2002. ACM Press.
-
(2002)
Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 253-260
-
-
Schein, A.I.1
Popescul, A.2
Ungar, L.H.3
Pennock, D.M.4
-
19
-
-
33745780139
-
Implicit user modeling for personalized search
-
New York, NY, USA ACM
-
X. Shen, B. Tan, and C. Zhai. Implicit user modeling for personalized search. In CIKM '05: Proceedings of the 14th ACM international conference on Information and knowledge management, pages 824-831, New York, NY, USA, 2005. ACM.
-
(2005)
CIKM '05: Proceedings of the 14th ACM International Conference on Information and Knowledge Management
, pp. 824-831
-
-
Shen, X.1
Tan, B.2
Zhai, C.3
-
20
-
-
84876461617
-
A family of non-negative matrix factorizations for one-class collaborative filtering
-
V. Sindhwani, S. S. Bucak, J. Hu, and A. Mojsilovic. A family of non-negative matrix factorizations for one-class collaborative filtering. In ACM RecSys 2009, 2009.
-
(2009)
ACM RecSys 2009
-
-
Sindhwani, V.1
Bucak, S.S.2
Hu, J.3
Mojsilovic, A.4
-
22
-
-
33749567020
-
Mining long-term search history to improve search accuracy
-
New York, NY, USA ACM
-
B. Tan, X. Shen, and C. Zhai. Mining long-term search history to improve search accuracy. In KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 718-723, New York, NY, USA, 2006. ACM.
-
(2006)
KDD '06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 718-723
-
-
Tan, B.1
Shen, X.2
Zhai, C.3
|