메뉴 건너뛰기




Volumn 22, Issue 1, 2011, Pages 37-51

Solving nonstationary classification problems with coupled upport vector machines

Author keywords

Adaptive methods; drifting concepts; support vector machine

Indexed keywords

ADAPTIVE CLASSIFIERS; ADAPTIVE METHODS; ADAPTIVE SUPPORT; BASIC IDEA; DATA SETS; DRIFTING CONCEPTS; ELECTRICITY PRICING; INPUT-OUTPUT FUNCTION; LEARNING METHODS; LEARNING PROBLEM; NONSTATIONARY; REAL-WORLD; REAL-WORLD APPLICATION; TIME WINDOWS; VECTOR MACHINES;

EID: 78651305965     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2083684     Document Type: Article
Times cited : (45)

References (55)
  • 1
    • 85018095293 scopus 로고
    • Beyond incremental processing: Tracking concept drift
    • Irvine, CA
    • J. C. Schlimmer and R.H. Granger, "Beyond incremental processing: Tracking concept drift," in Proc. 5th Nat. Conf. Artif. Intell., Irvine, CA, 1986, pp. 502-507.
    • (1986) Proc. 5th Nat. Conf. Artif. Intell. , pp. 502-507
    • Schlimmer, J.C.1    Granger, R.H.2
  • 2
    • 0141804082 scopus 로고    scopus 로고
    • Detecting concept drift with support vector machines
    • San Mateo, CA
    • R. Klinkenberg and T. Joachims, "Detecting concept drift with support vector machines," in Proc. 17th Int. Conf. Mach. Learn., San Mateo, CA, 2000, pp. 487-494.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 487-494
    • Klinkenberg, R.1    Joachims, T.2
  • 3
    • 0032136932 scopus 로고    scopus 로고
    • Statistical mechanics of online learning of drifting concepts: A variational approach
    • Aug.
    • R. Vicente, O. Kinouchi, and N. Caticha, "Statistical mechanics of online learning of drifting concepts: A variational approach," Mach. Learn., vol. 32, no. 2, pp. 179-201, Aug. 1998.
    • (1998) Mach. Learn. , vol.32 , Issue.2 , pp. 179-201
    • Vicente, R.1    Kinouchi, O.2    Caticha, N.3
  • 4
    • 0034320912 scopus 로고    scopus 로고
    • Learning changing concepts by exploiting the structure of change
    • Nov.
    • P. L. Bartlett, S. Ben-Dabid, and S. R. Kulkarni, "Learning changing concepts by exploiting the structure of change," Mach. Learn., vol. 41, no. 2, pp. 153-174, Nov. 2000.
    • (2000) Mach. Learn. , vol.41 , Issue.2 , pp. 153-174
    • Bartlett, P.L.1    Ben-Dabid, S.2    Kulkarni, S.R.3
  • 8
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Apr.
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol. 23, no. 1, pp. 69-101, Apr. 1996.
    • (1996) Mach. Learn. , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 9
    • 0031070068 scopus 로고    scopus 로고
    • Tolerating concept and sampling shift in lazy learning using prediction error context switching
    • Feb.
    • M. Salganicoff, "Tolerating concept and sampling shift in lazy learning using prediction error context switching," Artif. Intell. Rev., vol. 11, nos. 1-5, pp. 133-155, Feb. 1997.
    • (1997) Artif. Intell. Rev. , vol.11 , Issue.1-5 , pp. 133-155
    • Salganicoff, M.1
  • 10
  • 11
    • 67049100144 scopus 로고    scopus 로고
    • Paired learners for concept drift
    • Los Alamitos, CA
    • S. H. Bach and M. A. Maloof, "Paired learners for concept drift," in Proc. IEEE Int. Conf. Data Mining, Los Alamitos, CA, 2008, pp. 23-32.
    • (2008) Proc. Int. Conf. Data Mining , pp. 23-32
    • Bach, S.H.1    Maloof, M.A.2
  • 12
    • 48949116228 scopus 로고    scopus 로고
    • Just-in-time adaptive classifiers-part I: Detecting nonstationary changes
    • Jul.
    • C. Alippi and M. Roveri, "Just-in-time adaptive classifiers-part I: Detecting nonstationary changes," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1145-1153, Jul. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.7 , pp. 1145-1153
    • Alippi, C.1    Roveri, M.2
  • 13
    • 57749121230 scopus 로고    scopus 로고
    • Just-in-time adaptive classifiers-part II: Designing the classifier
    • Dec.
    • C. Alippi and M. Roveri, "Just-in-time adaptive classifiers-part II: Designing the classifier," IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2053-2064, Dec. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.12 , pp. 2053-2064
    • Alippi, C.1    Roveri, M.2
  • 14
    • 0002896413 scopus 로고
    • Tracking drifting concepts by minimizing disagreements
    • Jan.
    • D. P. Helmbold and P. M. Long, "Tracking drifting concepts by minimizing disagreements," Mach. Learn., vol. 14, no. 1, pp. 27-45, Jan. 1994.
    • (1994) Mach. Learn. , vol.14 , Issue.1 , pp. 27-45
    • Helmbold, D.P.1    Long, P.M.2
  • 16
    • 0013454820 scopus 로고    scopus 로고
    • On the complexity of learning from drifting distributions
    • San Mateo, CA
    • R. D. Barve and P. M. Long, "On the complexity of learning from drifting distributions," in Proc. 9th Annu. Workshop Comput. Learn. Theory, San Mateo, CA, 1996, pp. 170-193.
    • (1996) Proc. 9th Annu. Workshop Comput. Learn. Theory , pp. 170-193
    • Barve, R.D.1    Long, P.M.2
  • 18
    • 70449421606 scopus 로고    scopus 로고
    • Just in time classifiers: Managing the slow drift case
    • Atlanta, GA
    • C. Alippi, G. Boracchi, and M. Roveri, "Just in time classifiers: Managing the slow drift case," in Proc. Int. Joint Conf. Neural Netw., Atlanta, GA, 2009, pp. 114-120.
    • (2009) Proc. Int. Joint Conf. Neural Netw. , pp. 114-120
    • Alippi, C.1    Boracchi, G.2    Roveri, M.3
  • 22
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Sep.
    • V. Vapnik, "An overview of statistical learning theory," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988-999, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.1
  • 24
    • 56349087953 scopus 로고    scopus 로고
    • Learning concept drift in nonstationary environments using an ensemble of classifiers based approach
    • Hong Kong, China, Jun.
    • M. Karnick, M. Ahiskali, M. D. Muhlbaier, and R. Polikar, "Learning concept drift in nonstationary environments using an ensemble of classifiers based approach," in Proc. IEEE Int. Joint Conf. Neural Netw., Hong Kong, China, Jun. 2008, pp. 3455-3462.
    • (2008) Proc. Int. Joint Conf. Neural Netw. , pp. 3455-3462
    • Karnick, M.1    Ahiskali, M.2    Muhlbaier, M.D.3    Polikar, R.4
  • 25
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • Dec.
    • J. Z. Kolter and M. A. Maloof, "Dynamic weighted majority: An ensemble method for drifting concepts," J. Mach. Learn. Res., vol. 8, pp. 2755-2790, Dec. 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 26
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • J. C. Schlimmer and R.H. Granger, Jr., "Incremental learning from noisy data," Mach. Learn., vol. 1, no. 3, pp. 317-354, 1986.
    • (1986) Mach. Learn. , vol.1 , Issue.3 , pp. 317-354
    • Schlimmer, J.C.1    Granger Jr., R.H.2
  • 27
    • 0348216539 scopus 로고    scopus 로고
    • Adaptation to drifting concepts
    • Proc. Progress Artif. Intell., 11th Portuguese Conf. Artif1. Intell. (EPIA) . Beja, Portugal
    • G. Castillo, J. Gama, and P. Medas, "Adaptation to drifting concepts," in Proc. Progress Artif. Intell., 11th Portuguese Conf. Artif1. Intell. (EPIA), LNCS 2902. Beja, Portugal, 2003, pp. 279-293.
    • (2003) LNCS , vol.2902 , pp. 279-293
    • Castillo, G.1    Gama, J.2    Medas, P.3
  • 28
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection versus example weighting
    • Aug.
    • R. Klinkenberg, "Learning drifting concepts: Example selection versus example weighting," Intell. Data Anal., vol. 8, no. 3, pp. 281-300, Aug. 2004.
    • (2004) Intell. Data Anal. , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 29
    • 0003307180 scopus 로고    scopus 로고
    • Estimating the generalization performance of a SVM efficiently
    • San Francisco, CA
    • T. Joachims, "Estimating the generalization performance of a SVM efficiently," in Proc. 17th Int. Conf. Mach. Learn., San Francisco, CA, 2000, pp. 431-438.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 431-438
    • Joachims, T.1
  • 31
    • 51749087063 scopus 로고    scopus 로고
    • Just-in-time adaptive classifiers in nonstationary conditions
    • Orlando, FL
    • C. Alippi and M. Roveri, "Just-in-time adaptive classifiers in nonstationary conditions," in Proc. Int. Joint Conf. Neural Netw., Orlando, FL, 2007, pp. 1014-1019.
    • (2007) Proc. Int. Joint Conf. Neural Netw. , pp. 1014-1019
    • Alippi, C.1    Roveri, M.2
  • 32
    • 26944454094 scopus 로고    scopus 로고
    • Tracking changing user interests through prior-learning of context
    • Adaptive Hypermedia. New York: Springer- Verlag
    • I. Koychev, "Tracking changing user interests through prior-learning of context," in Adaptive Hypermedia, LNCS 2347. New York: Springer- Verlag, 2002, pp. 223-232.
    • (2002) LNCS , vol.2347 , pp. 223-232
    • Koychev, I.1
  • 33
    • 0034299906 scopus 로고    scopus 로고
    • Selecting examples for partial memory learning
    • Oct.
    • M. Maloof and R. Michalski, "Selecting examples for partial memory learning," Mach. Learn., vol. 41, no. 1, pp. 27-52, Oct. 2000.
    • (2000) Mach. Learn. , vol.41 , Issue.1 , pp. 27-52
    • Maloof, M.1    Michalski, R.2
  • 36
    • 57049173376 scopus 로고    scopus 로고
    • Classifying data streams with skewed class distributions and concept drifts
    • Nov.-Dec.
    • J. Gao, B. Ding, J. Han, W. Fan, and P. Yu, "Classifying data streams with skewed class distributions and concept drifts," IEEE Internet Comput., vol. 12, no. 6, pp. 37-49, Nov.-Dec. 2008.
    • (2008) IEEE Internet Comput. , vol.12 , Issue.6 , pp. 37-49
    • Gao, J.1    Ding, B.2    Han, J.3    Fan, W.4    Yu, P.5
  • 37
    • 63449089176 scopus 로고    scopus 로고
    • Adapted one-versus-all decision trees for data stream classification
    • May
    • S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari, "Adapted one-versus-all decision trees for data stream classification," IEEE Trans. Knowl. Data Eng., vol. 21, no. 5, pp. 624-637, May 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.5 , pp. 624-637
    • Hashemi, S.1    Yang, Y.2    Mirzamomen, Z.3    Kangavari, M.4
  • 38
    • 70449436537 scopus 로고    scopus 로고
    • Incremental learning in nonstationary environments with controlled forgetting
    • Atlanta, GA
    • R. Elwell and R. Polikar, "Incremental learning in nonstationary environments with controlled forgetting," in Proc. Int. Joint Conf. Neural Netw., Atlanta, GA, 2009, pp. 771-778.
    • (2009) Proc. Int. Joint Conf. Neural Netw. , pp. 771-778
    • Elwell, R.1    Polikar, R.2
  • 39
    • 58649083899 scopus 로고    scopus 로고
    • Learn ++.NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes
    • Jan.
    • M. D. Muhlbaier, A. Topalis, and R. Polikar, "Learn ++.NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes," IEEE Trans. Neural Netw., vol. 20, no. 1, pp. 152-168, Jan. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.1 , pp. 152-168
    • Muhlbaier, M.D.1    Topalis, A.2    Polikar, R.3
  • 40
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • Nov.
    • Z. Kolter and M. Maloof, "Dynamic weighted majority: A new ensemble method for tracking concept drift," in Proc. 3rd IEEE Int. Conf. Data Mining, Nov. 2003, pp. 123-130.
    • (2003) Proc. 3rd IEEE Int. Conf. Data Mining , pp. 123-130
    • Kolter, Z.1    Maloof, M.2
  • 41
    • 35148838877 scopus 로고
    • The weighted majority algorithm
    • Feb.
    • N. Littlestone and M. K. Warmuth, "The weighted majority algorithm," Inform. Comput., vol. 108, no. 2, pp. 212-261, Feb. 1994.
    • (1994) Inform. Comput. , vol.108 , Issue.2 , pp. 212-261
    • Littlestone, N.1    Warmuth, M.K.2
  • 43
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Cambridge, MA: MIT Press
    • J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press, 2000, pp. 185-208.
    • (2000) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 44
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • Apr.
    • N. Littlestone, "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm," Mach. Learn., vol. 2, no. 4, pp. 285- 318, Apr. 1987.
    • (1987) Mach. Learn. , vol.2 , Issue.4 , pp. 285-318
    • Littlestone, N.1
  • 45
    • 49049090861 scopus 로고    scopus 로고
    • A constrained optimization approach to preserving prior knowledge during incremental training
    • Jun.
    • S. Ferrari and M. Jensenius, "A constrained optimization approach to preserving prior knowledge during incremental training," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 996-1009, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.6 , pp. 996-1009
    • Ferrari, S.1    Jensenius, M.2
  • 47
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Jan.
    • J. Kivinen and M. Warmuth, "Exponentiated gradient versus gradient descent for linear predictors," Inform. Comput., vol. 132, no. 1, pp. 1- 63, Jan. 1997.
    • (1997) Inform. Comput. , vol.132 , Issue.1 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.2
  • 49
    • 0042496213 scopus 로고    scopus 로고
    • Tracking the best linear predictor
    • Sep.
    • M. Herbster and M. K. Warmuth, "Tracking the best linear predictor," J. Mach. Learn. Res., vol. 1, pp. 281-309, Sep. 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 281-309
    • Herbster, M.1    Warmuth, M.K.2
  • 50
    • 0031189914 scopus 로고    scopus 로고
    • Multi-task learning
    • Jul.
    • R. Caruana, "Multi-task learning," Mach. Learn., vol. 28, no. 1, pp. 41-75, Jul. 1997.
    • (1997) Mach. Learn. , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 52
    • 21844456299 scopus 로고    scopus 로고
    • Learning multiple tasks with kernel methods
    • Dec.
    • T. Evgeniou, C. M. Micchelli, and M. Pontil, "Learning multiple tasks with kernel methods," J. Mach. Learn. Res., vol. 6, pp. 615-637, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 615-637
    • Evgeniou, T.1    Micchelli, C.M.2    Pontil, M.3
  • 53
    • 12244286335 scopus 로고    scopus 로고
    • Systematic data selection to mine concept-drifting data streams
    • Seattle, WA
    • W. Fan, "Systematic data selection to mine concept-drifting data streams," in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Seattle, WA, 2004, pp. 128-137.
    • (2004) Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining , pp. 128-137
    • Fan, W.1
  • 54
    • 35348907876 scopus 로고    scopus 로고
    • Dynamic integration of classifiers for handling concept drift
    • Jan.
    • A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, "Dynamic integration of classifiers for handling concept drift," Inform. Fusion, vol. 9, no. 1, pp. 56-68, Jan. 2008.
    • (2008) Inform. Fusion , vol.9 , Issue.1 , pp. 56-68
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3    Puuronen, S.4
  • 55
    • 33749394792 scopus 로고    scopus 로고
    • Splice-2 comparative evaluation: Electricity pricing
    • Univ. New South Wales, Sydney, Australia, Tech. Rep. NSW-CSE-TR-9905
    • M. Harries, "Splice-2 comparative evaluation: Electricity pricing," School Comput. Sci. & Eng., Univ. New South Wales, Sydney, Australia, Tech. Rep. NSW-CSE-TR-9905, 1999.
    • (1999) School Comput. Sci. & Eng.
    • Harries, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.