메뉴 건너뛰기




Volumn , Issue , 2010, Pages 749-758

Automatic detection of craters in planetary images: An embedded framework using feature selection and boosting

Author keywords

Classification; Feature selection; Planetary and space science; Spatial data mining; Transfer learning

Indexed keywords

CLASSIFICATION; FEATURE SELECTION; SPACE SCIENCE; SPATIAL DATA MINING; TRANSFER LEARNING;

EID: 78651290320     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1871437.1871534     Document Type: Conference Paper
Times cited : (16)

References (25)
  • 2
    • 36348962019 scopus 로고    scopus 로고
    • Impact crater recognition on mars based on a probability volume created by template matching
    • L. Bandeira, J. Saraiva, and P. Pina. Impact crater recognition on Mars based on a probability volume created by template matching. In IEEE Transactions on Geoscience and Remote Sensing, pages 4008-4015, 2007.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , pp. 4008-4015
    • Bandeira, L.1    Saraiva, J.2    Pina, P.3
  • 3
    • 38249029008 scopus 로고
    • Crater size-frequency distributions and a revised martian relative chronology
    • N. G. Barlow. Crater size-frequency distributions and a revised Martian relative chronology. Icarus, 75:285-305, 1988.
    • (1988) Icarus , vol.75 , pp. 285-305
    • Barlow, N.G.1
  • 7
    • 0000398049 scopus 로고
    • Standard techniques for presentation and analysis of crater size-frequency data
    • Crater Analysis Techniques Working Group February
    • Crater Analysis Techniques Working Group. Standard techniques for presentation and analysis of crater size-frequency data. ICARUS, 37:467-474, February 1979.
    • (1979) ICARUS , vol.37 , pp. 467-474
  • 9
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Springer-Verlag
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In Computational Learning Theory: Eurocolt, pages 23-37. Springer-Verlag, 1995.
    • (1995) Computational Learning Theory: Eurocolt , pp. 23-37
    • Freund, Y.1    Schapire, R.2
  • 12
    • 78651296109 scopus 로고    scopus 로고
    • HRSC Data Browser. http://europlanet.dlr.de/node/index.php?id=209, 2009.
    • (2009) HRSC Data Browser
  • 16
    • 0035449743 scopus 로고    scopus 로고
    • Crater detection for autonomous landing on asteroids
    • September
    • B. Leroy, G. Medioni, and E. J. L. Matthies. Crater detection for autonomous landing on asteroids. Image and Vision Computing, 19:787-792, September 2001.
    • (2001) Image and Vision Computing , vol.19 , pp. 787-792
    • Leroy, B.1    Medioni, G.2    Matthies, E.J.L.3
  • 19
    • 43849095104 scopus 로고    scopus 로고
    • Open framework for objective evaluation of crater detection algorithms with first test-field subsystem based on MOLA data
    • G. Salamuniccar and S. Loncaric. Open framework for objective evaluation of crater detection algorithms with first test-field subsystem based on MOLA data. Advances in Space Research, 42(1):6-19, 2007.
    • (2007) Advances in Space Research , vol.42 , Issue.1 , pp. 6-19
    • Salamuniccar, G.1    Loncaric, S.2
  • 22
    • 67349265520 scopus 로고    scopus 로고
    • Automatic detection of sub-km craters in high resolution planetary images
    • E. R. Urbach and T. F. Stepinski. Automatic detection of sub-km craters in high resolution planetary images. Planetary and Space Science, 57:880-887, 2009.
    • (2009) Planetary and Space Science , vol.57 , pp. 880-887
    • Urbach, E.R.1    Stepinski, T.F.2
  • 23
    • 84879346950 scopus 로고    scopus 로고
    • Training of a crater detection algorithm for mars crater imagery
    • T. Vinogradova, M. Burl, and E. Mjolsness. Training of a crater detection algorithm for Mars crater imagery. In IEEE Aerospace Conference Proceedings, volume 7, pages 7-3201-7-3211, 2002.
    • (2002) IEEE Aerospace Conference Proceedings , vol.7 , pp. 73201-73211
    • Vinogradova, T.1    Burl, M.2    Mjolsness, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.