메뉴 건너뛰기




Volumn 11, Issue , 2011, Pages

Support vector machine model for diagnosis of lymph node metastasis in gastric cancer with multidetector computed tomography: A preliminary study

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; AGED; ARTICLE; CANCER INVASION; CANCER SURGERY; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; DIAGNOSTIC TEST ACCURACY STUDY; FEMALE; HISTOPATHOLOGY; HUMAN; IMAGE ANALYSIS; LYMPH NODE METASTASIS; MAJOR CLINICAL STUDY; MALE; MULTIDETECTOR COMPUTED TOMOGRAPHY; PREOPERATIVE EVALUATION; RETROSPECTIVE STUDY; SENSITIVITY AND SPECIFICITY; SEROSA; STOMACH CANCER; SUPPORT VECTOR MACHINE; TUMOR CLASSIFICATION; TUMOR VOLUME; VALIDATION STUDY; ALGORITHM; ANALYSIS OF VARIANCE; CLASSIFICATION; COMPUTER ASSISTED TOMOGRAPHY; INSTRUMENTATION; METHODOLOGY; MIDDLE AGED; PATHOLOGY; RECEIVER OPERATING CHARACTERISTIC; REPRODUCIBILITY; STOMACH TUMOR;

EID: 78651096895     PISSN: None     EISSN: 14712407     Source Type: Journal    
DOI: 10.1186/1471-2407-11-10     Document Type: Article
Times cited : (28)

References (28)
  • 1
    • 0036271262 scopus 로고    scopus 로고
    • Carcinoma of stomach and duodenum: radiologic diagnosis and staging
    • 10.1016/S0720-048X(02)00035-9, 12044697
    • Tunaci M. Carcinoma of stomach and duodenum: radiologic diagnosis and staging. Eur J Radiol 2002, 42(3):181-92. 10.1016/S0720-048X(02)00035-9, 12044697.
    • (2002) Eur J Radiol , vol.42 , Issue.3 , pp. 181-192
    • Tunaci, M.1
  • 2
    • 65449179192 scopus 로고    scopus 로고
    • Imaging in assessing lymph node status in gastric cancer
    • 10.1007/s10120-008-0492-5, 19390927
    • Kwee RM, Kwee TC. Imaging in assessing lymph node status in gastric cancer. Gastric Cancer 2009, 12:6-22. 10.1007/s10120-008-0492-5, 19390927.
    • (2009) Gastric Cancer , vol.12 , pp. 6-22
    • Kwee, R.M.1    Kwee, T.C.2
  • 5
    • 76549108307 scopus 로고    scopus 로고
    • Multivariate analysis of risk factors of lymph node metastasis in early gastric cancer
    • Fang Y, Zhao DB, Zhou JG, Cai JQ. Multivariate analysis of risk factors of lymph node metastasis in early gastric cancer. Zhonghua Wei Chang Wai Ke Za Zhi 2009, 12(2):130-2.
    • (2009) Zhonghua Wei Chang Wai Ke Za Zhi , vol.12 , Issue.2 , pp. 130-132
    • Fang, Y.1    Zhao, D.B.2    Zhou, J.G.3    Cai, J.Q.4
  • 6
    • 67649984528 scopus 로고    scopus 로고
    • Clinicopathological features associated with lymph node metastasis in early gastric cancer: analysis of a single-institution experience in China
    • 2706748, 19440566
    • Shen L, Huang Y, Sun M, Xu H, Wei W, Wu W. Clinicopathological features associated with lymph node metastasis in early gastric cancer: analysis of a single-institution experience in China. Can J Gastroenterol 2009, 23(5):353-6. 2706748, 19440566.
    • (2009) Can J Gastroenterol , vol.23 , Issue.5 , pp. 353-356
    • Shen, L.1    Huang, Y.2    Sun, M.3    Xu, H.4    Wei, W.5    Wu, W.6
  • 7
    • 0036375080 scopus 로고    scopus 로고
    • Lymph node metastasis in early gastric cancer: a clinicopathological analysis
    • Wu CY, Chen JT, Chen GH, Yeh HZ. Lymph node metastasis in early gastric cancer: a clinicopathological analysis. Hepatogastroenterology 2002, 49(47):1465-8.
    • (2002) Hepatogastroenterology , vol.49 , Issue.47 , pp. 1465-1468
    • Wu, C.Y.1    Chen, J.T.2    Chen, G.H.3    Yeh, H.Z.4
  • 8
    • 33748261618 scopus 로고    scopus 로고
    • Predictive factors of lymph node metastasis in patients with undifferentiated early gastric cancers
    • 10.1097/00004836-200605000-00009, 16721222
    • Nasu J, Nishina T, Hirasaki S, Moriwaki T, Hyodo I, Kurita A, Nishimura R. Predictive factors of lymph node metastasis in patients with undifferentiated early gastric cancers. J Clin Gastroenterol 2006, 40(5):412-5. 10.1097/00004836-200605000-00009, 16721222.
    • (2006) J Clin Gastroenterol , vol.40 , Issue.5 , pp. 412-415
    • Nasu, J.1    Nishina, T.2    Hirasaki, S.3    Moriwaki, T.4    Hyodo, I.5    Kurita, A.6    Nishimura, R.7
  • 9
    • 33947414058 scopus 로고    scopus 로고
    • SVM Classifier - a comprehensive java interface for support vector machine classification of microarray data
    • 10.1186/1471-2105-7-S4-S25, 1780131, 17217518
    • Pirooznia M, Deng Y. SVM Classifier - a comprehensive java interface for support vector machine classification of microarray data. BMC Bioinformatics 2006, 7(Suppl 4):S25. 10.1186/1471-2105-7-S4-S25, 1780131, 17217518.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL 4
    • Pirooznia, M.1    Deng, Y.2
  • 11
    • 77952878088 scopus 로고    scopus 로고
    • Predicting variations of perceptual performance across individuals from neural activity using pattern classifiers
    • Das K, Giesbrecht B, Eckstein MP. Predicting variations of perceptual performance across individuals from neural activity using pattern classifiers. Neuroimage 2010,
    • (2010) Neuroimage
    • Das, K.1    Giesbrecht, B.2    Eckstein, M.P.3
  • 12
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data
    • Mourão-Miranda J, Bokde AL, Born C, Hampel H, Stetter M. Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. Neuroimage 2005, 28(4):980-95.
    • (2005) Neuroimage , vol.28 , Issue.4 , pp. 980-995
    • Mourão-Miranda, J.1    Bokde, A.L.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 14
    • 0003192645 scopus 로고    scopus 로고
    • Japanese Classification of Gastric Carcinoma -2nd English Edition -
    • Japanese Gastric Cancer Association
    • Japanese Gastric Cancer Association Japanese Classification of Gastric Carcinoma -2nd English Edition -. Gastric Cancer 1998, 1(1):10-24. Japanese Gastric Cancer Association.
    • (1998) Gastric Cancer , vol.1 , Issue.1 , pp. 10-24
  • 15
    • 77950819072 scopus 로고    scopus 로고
    • Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes
    • 2850872, 20307319
    • Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak 2010, 10(16). 2850872, 20307319.
    • (2010) BMC Med Inform Decis Mak , vol.10 , Issue.16
    • Yu, W.1    Liu, T.2    Valdez, R.3    Gwinn, M.4    Khoury, M.J.5
  • 16
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM --A Library for Support Vector Machines
    • Chang CC, Lin CJ. LIBSVM --A Library for Support Vector Machines. 2009, http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2009)
    • Chang, C.C.1    Lin, C.J.2
  • 17
    • 0025785183 scopus 로고
    • Upper abdominal lymph nodes: criteria for normal size determined with CT
    • Dorfman RE, Alpern MB, Gross BH, Sandler MA. Upper abdominal lymph nodes: criteria for normal size determined with CT. Radiology 1991, 180(2):319-22.
    • (1991) Radiology , vol.180 , Issue.2 , pp. 319-322
    • Dorfman, R.E.1    Alpern, M.B.2    Gross, B.H.3    Sandler, M.A.4
  • 19
    • 0023196372 scopus 로고
    • Abdominal lymphadenopathy in benign diseases: CT detection
    • Deutch SJ, Sandler MA, Alpern MB. Abdominal lymphadenopathy in benign diseases: CT detection. Radiology 1987, 163(2):335-8.
    • (1987) Radiology , vol.163 , Issue.2 , pp. 335-338
    • Deutch, S.J.1    Sandler, M.A.2    Alpern, M.B.3
  • 20
    • 23844536540 scopus 로고    scopus 로고
    • Gastric cancer by multidetector row CT: preoperative staging
    • 10.1007/s00261-004-0273-5, 15785907
    • Kim AY, Kim HJ, Ha HK. Gastric cancer by multidetector row CT: preoperative staging. Abdom Imaging 2005, 30(4):465-72. 10.1007/s00261-004-0273-5, 15785907.
    • (2005) Abdom Imaging , vol.30 , Issue.4 , pp. 465-472
    • Kim, A.Y.1    Kim, H.J.2    Ha, H.K.3
  • 21
    • 33846410243 scopus 로고    scopus 로고
    • Gastric cancer: preoperative local staging with 3D multi-detector row CT--correlation with surgical and histopathologic results
    • 10.1148/radiol.2422051557, 17255419
    • Chen CY, Hsu JS, Wu DC, Kang WY, Hsieh JS, Jaw TS, Wu MT, Liu GC. Gastric cancer: preoperative local staging with 3D multi-detector row CT--correlation with surgical and histopathologic results. Radiology 2007, 242(2):472-82. 10.1148/radiol.2422051557, 17255419.
    • (2007) Radiology , vol.242 , Issue.2 , pp. 472-482
    • Chen, C.Y.1    Hsu, J.S.2    Wu, D.C.3    Kang, W.Y.4    Hsieh, J.S.5    Jaw, T.S.6    Wu, M.T.7    Liu, G.C.8
  • 22
    • 78751700921 scopus 로고    scopus 로고
    • Research for the correlative indicators of diagnosing lymph nodes metastasis by helical CT in gastric cardiac carcinoma
    • Zhang XP, Cui YH, Tang L. Research for the correlative indicators of diagnosing lymph nodes metastasis by helical CT in gastric cardiac carcinoma. Chinese Journal of Practical Surgery 2007, 27(1).
    • (2007) Chinese Journal of Practical Surgery , vol.27 , Issue.1
    • Zhang, X.P.1    Cui, Y.H.2    Tang, L.3
  • 23
    • 34948835662 scopus 로고    scopus 로고
    • Applications of artificial neural networks in medical science
    • 10.2174/157488407781668811, 18690868
    • Patel JL, Goyal RK. Applications of artificial neural networks in medical science. Curr Clin Pharmacol 2007, 2(3):217-26. 10.2174/157488407781668811, 18690868.
    • (2007) Curr Clin Pharmacol , vol.2 , Issue.3 , pp. 217-226
    • Patel, J.L.1    Goyal, R.K.2
  • 24
    • 16844374019 scopus 로고    scopus 로고
    • Artificial Neural Network for Prediction of Lymph Node Metastasis in Gastric Cancer: A Phase II Diagnostic Study
    • 10.1245/ASO.2004.04.018, 15123460
    • Bollschweiler EH, Mönig SP, Hensler K, Baldus SE, Maruyama K, Hölscher AH. Artificial Neural Network for Prediction of Lymph Node Metastasis in Gastric Cancer: A Phase II Diagnostic Study. Ann Surg Oncol 2004, 11(5):506-11. 10.1245/ASO.2004.04.018, 15123460.
    • (2004) Ann Surg Oncol , vol.11 , Issue.5 , pp. 506-511
    • Bollschweiler, E.H.1    Mönig, S.P.2    Hensler, K.3    Baldus, S.E.4    Maruyama, K.5    Hölscher, A.H.6
  • 25
    • 26844479149 scopus 로고    scopus 로고
    • Artificial neural networks for diagnosis and survival prediction in colon cancer
    • 10.1186/1476-4598-4-29, 1208946, 16083507
    • Ahmed FE. Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol Cancer 2005, 4:29. 10.1186/1476-4598-4-29, 1208946, 16083507.
    • (2005) Mol Cancer , vol.4 , pp. 29
    • Ahmed, F.E.1
  • 26
    • 0345040882 scopus 로고    scopus 로고
    • Support vector machine applications in bioinformatics
    • Byvatov E, Schneider G. Support vector machine applications in bioinformatics. Appl Bioinformatics 2003, 2(2):67-77.
    • (2003) Appl Bioinformatics , vol.2 , Issue.2 , pp. 67-77
    • Byvatov, E.1    Schneider, G.2
  • 27
    • 70449568283 scopus 로고    scopus 로고
    • Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs
    • 10.1371/journal.pone.0007522, 2760777, 19847297
    • McQuisten KA, Peek AS. Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs. PLoS One 2009, 4(10):e7522. 10.1371/journal.pone.0007522, 2760777, 19847297.
    • (2009) PLoS One , vol.4 , Issue.10
    • McQuisten, K.A.1    Peek, A.S.2
  • 28
    • 77952093742 scopus 로고    scopus 로고
    • Image-based clinical decision support for transrectal ultrasound in the diagnosis of prostate cancer: comparison of multiple logistic regression, artificial neural network, and support vector machine
    • Epub 2009 Dec 17, 10.1007/s00330-009-1686-x, 20016902
    • Lee HJ, Hwang SI, Han SM, Park SH, Kim SH, Cho JY, Seong CG, Choe G. Image-based clinical decision support for transrectal ultrasound in the diagnosis of prostate cancer: comparison of multiple logistic regression, artificial neural network, and support vector machine. Eur Radiol 2010, 20(6):1476-8. Epub 2009 Dec 17, 10.1007/s00330-009-1686-x, 20016902.
    • (2010) Eur Radiol , vol.20 , Issue.6 , pp. 1476-1478
    • Lee, H.J.1    Hwang, S.I.2    Han, S.M.3    Park, S.H.4    Kim, S.H.5    Cho, J.Y.6    Seong, C.G.7    Choe, G.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.