메뉴 건너뛰기




Volumn , Issue , 2010, Pages 25-34

Unified tag analysis with multi-edge graph

Author keywords

automatic tagging; multi edge graph; tag refinement; tag to region assignment

Indexed keywords

AUTOMATIC TAGGING; BENCHMARK DATASETS; CONSTRAINED OPTIMIZATION PROBLEMS; CUTTING PLANE METHODS; IMAGE REPOSITORY; MULTI-EDGE GRAPH; OBJECTIVE FUNCTIONS; ONLINE IMAGES; TAG REFINEMENT; TAG-TO-REGION ASSIGNMENT; THRESHOLDING; VERTEX PAIRS;

EID: 78650982503     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1873951.1873958     Document Type: Conference Paper
Times cited : (37)

References (32)
  • 1
    • 78650991587 scopus 로고    scopus 로고
    • Flickr. http://www.flickr.com/.
    • Flickr
  • 2
    • 78650972543 scopus 로고    scopus 로고
    • Picasa. http://picasa.google.com/.
    • Picasa
  • 3
    • 34547402493 scopus 로고    scopus 로고
    • To search or to label?: Predicting the performance of search-based automatic image classifiers
    • L. Kennedy, S.-F. Chang, and I. Kozintsev. To search or to label?: Predicting the performance of search-based automatic image classifiers. In MIR, 2006.
    • (2006) MIR
    • Kennedy, L.1    Chang, S.-F.2    Kozintsev, I.3
  • 4
    • 74049158146 scopus 로고    scopus 로고
    • Nus-wide: A real-world web image database from national university of singapore
    • T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: A real-world web image database from national university of singapore. In CIVR, 2009.
    • (2009) CIVR
    • Chua, T.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.6
  • 6
    • 35348829895 scopus 로고    scopus 로고
    • Why we tag: Motivations for annotation in mobile and online media
    • M. Ames and M. Naaman. Why we tag: Motivations for annotation in mobile and online media. In CHI, 2007.
    • (2007) CHI
    • Ames, M.1    Naaman, M.2
  • 7
    • 34948858988 scopus 로고    scopus 로고
    • Content-based image annotation refinement
    • C. Wang, F. Jing, L. Zhang, and H.-J. Zhang. Content-based image annotation refinement. In CVPR, 2007.
    • (2007) CVPR
    • Wang, C.1    Jing, F.2    Zhang, L.3    Zhang, H.-J.4
  • 9
    • 50649087214 scopus 로고    scopus 로고
    • Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes
    • L. Cao and L. Fei-Fei. Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In ICCV, 2007.
    • (2007) ICCV
    • Cao, L.1    Fei-Fei, L.2
  • 10
    • 69549118313 scopus 로고    scopus 로고
    • Unsupervised learning of probabilistic object models (poms) for object classification, segmentation, and recognition using knowledge propagation
    • Y. Chen, L. Zhu, A. Yuille, and H.-J. Zhang. Unsupervised learning of probabilistic object models (poms) for object classification, segmentation, and recognition using knowledge propagation. TPAMI, 2009.
    • (2009) TPAMI
    • Chen, Y.1    Zhu, L.2    Yuille, A.3    Zhang, H.-J.4
  • 11
    • 33845423382 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV, 2006.
    • (2006) ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 13
    • 0141836773 scopus 로고    scopus 로고
    • Automatic linguistic indexing of pictures by a statistical modeling approach
    • J. Li and J. Wang. Automatic linguistic indexing of pictures by a statistical modeling approach. TPAMI, 2003.
    • (2003) TPAMI
    • Li, J.1    Wang, J.2
  • 14
    • 0037282477 scopus 로고    scopus 로고
    • Cbsa: Content-based soft annotation for multimodal image retrieval using bayes point machines
    • E. Chang, K. Goh, G. Sychay, and G. Wu. Cbsa: content-based soft annotation for multimodal image retrieval using bayes point machines. TCSVT, 2003.
    • (2003) TCSVT
    • Chang, E.1    Goh, K.2    Sychay, G.3    Wu, G.4
  • 15
    • 1542347786 scopus 로고    scopus 로고
    • Automatic image annotation and retrieval using cross-media relevance models
    • J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image annotation and retrieval using cross-media relevance models. In SIGIR, 2003.
    • (2003) SIGIR
    • Jeon, J.1    Lavrenko, V.2    Manmatha, R.3
  • 16
    • 5044225521 scopus 로고    scopus 로고
    • Multiple bernoulli relevance models for image and video annotation
    • S. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video annotation. In CVPR, 2004.
    • (2004) CVPR
    • Feng, S.1    Manmatha, R.2    Lavrenko, V.3
  • 18
    • 51949083910 scopus 로고    scopus 로고
    • Spectral clustering and transductive learning with multiple views
    • D. Zhou and C. Burges. Spectral clustering and transductive learning with multiple views. In ICML, 2007.
    • (2007) ICML
    • Zhou, D.1    Burges, C.2
  • 20
    • 85135520881 scopus 로고    scopus 로고
    • Learning with hypergraphs: Clustering, classification, and embedding
    • D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clustering, classification, and embedding. In NIPS, 2006.
    • (2006) NIPS
    • Zhou, D.1    Huang, J.2    Schölkopf, B.3
  • 21
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. IJCV, 2004.
    • (2004) IJCV
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 22
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI, 2000.
    • (2000) TPAMI
    • Shi, J.1    Malik, J.2
  • 23
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • B. Russell, W. Freeman, A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006.
    • (2006) CVPR
    • Russell, B.1    Freeman, W.2    Efros, A.3    Sivic, J.4    Zisserman, A.5
  • 24
    • 9644260534 scopus 로고    scopus 로고
    • Scale & affine invariant interest point detectors
    • K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. IJCV, 2004.
    • (2004) IJCV
    • Mikolajczyk, K.1    Schmid, C.2
  • 25
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.1
  • 26
    • 0001547779 scopus 로고
    • The cutting-plane method for solving convex programs
    • J. Kelley. The cutting-plane method for solving convex programs. JSIAM, 1960.
    • (1960) JSIAM
    • Kelley, J.1
  • 27
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • T. Joachims. Training linear svms in linear time. In KDD, 2006.
    • (2006) KDD
    • Joachims, T.1
  • 28
    • 0742330658 scopus 로고    scopus 로고
    • The truth about corel - Evaluation in image retrieval
    • H. Müller, S. Marchand-Maillet, and T. Pun. The truth about corel - evaluation in image retrieval. In CIVR, 2002.
    • (2002) CIVR
    • Müller, H.1    Marchand-Maillet, S.2    Pun, T.3
  • 29
    • 70350647018 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In AAAI, 2006.
    • (2006) AAAI
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 30
    • 52649118114 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by solving a sylvester equation
    • G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-supervised multi-label learning by solving a sylvester equation. In SDM, 2008.
    • (2008) SDM
    • Chen, G.1    Song, Y.2    Wang, F.3    Zhang, C.4
  • 31
    • 60649094696 scopus 로고    scopus 로고
    • Graph-based semi-supervised learning with multiple labels
    • Z.-J. Zha, T. Mei, J. Wang, Z. Wang, and X.-S. Hua. Graph-based semi-supervised learning with multiple labels. JVCI, 2009.
    • (2009) JVCI
    • Zha, Z.-J.1    Mei, T.2    Wang, J.3    Wang, Z.4    Hua, X.-S.5
  • 32
    • 33749263718 scopus 로고    scopus 로고
    • MISSL: Multiple instance semi-supervised learning
    • R. Rahmani and S. Goldman. MISSL: Multiple instance semi-supervised learning. In ICML, 2006.
    • (2006) ICML
    • Rahmani, R.1    Goldman, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.