메뉴 건너뛰기




Volumn 105, Issue 1, 2011, Pages 1-6

Bagging for robust non-linear multivariate calibration of spectroscopy

Author keywords

Bootstrap aggregating; Ensemble modelling; Near infrared spectroscopy; Non linear calibration; Robust model

Indexed keywords

FAT; PROTEIN;

EID: 78650948925     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2010.10.004     Document Type: Article
Times cited : (36)

References (57)
  • 2
    • 0000769141 scopus 로고    scopus 로고
    • Near-infrared spectroscopic determination of acetate, ammonium, biomass, and glycerol in an industrial Escherichia coli fermentation
    • Hall J.W., McNeil B., Rollins M.J., Draper I., Thompson B.G., Macaloney G. Near-infrared spectroscopic determination of acetate, ammonium, biomass, and glycerol in an industrial Escherichia coli fermentation. Appl. Spectrosc. 1996, 50:102-108.
    • (1996) Appl. Spectrosc. , vol.50 , pp. 102-108
    • Hall, J.W.1    McNeil, B.2    Rollins, M.J.3    Draper, I.4    Thompson, B.G.5    Macaloney, G.6
  • 3
    • 0035502168 scopus 로고    scopus 로고
    • Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy
    • Togkalidou T., Fujiwara M., Patel S., Braatz R.D. Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy. J. Cryst. Growth 2001, 231:534-543.
    • (2001) J. Cryst. Growth , vol.231 , pp. 534-543
    • Togkalidou, T.1    Fujiwara, M.2    Patel, S.3    Braatz, R.D.4
  • 4
    • 77956413803 scopus 로고    scopus 로고
    • A robust calibration modeling strategy for analysis of interference-subject spectral data
    • Zhao C.H., Gao F.R., Yao Y., Wang F.L. A robust calibration modeling strategy for analysis of interference-subject spectral data. AIChE J. 2010, 56:196-206.
    • (2010) AIChE J. , vol.56 , pp. 196-206
    • Zhao, C.H.1    Gao, F.R.2    Yao, Y.3    Wang, F.L.4
  • 6
    • 0022059848 scopus 로고
    • Linearization and scatter-correction for near-infrared reflectance spectra of meat
    • Geladi P., Macdougall D., Martens H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39:491-500.
    • (1985) Appl. Spectrosc. , vol.39 , pp. 491-500
    • Geladi, P.1    Macdougall, D.2    Martens, H.3
  • 7
    • 0032080916 scopus 로고    scopus 로고
    • Influence and correction of temperature perturbations on NIR spectra during the monitoring of a polymorph conversion process prior to self-modelling mixture analysis
    • DeBraekeleer K., Sanchez F.C., Hailey P.A., Sharp D.C.A., Pettman A.J., Massart D.L. Influence and correction of temperature perturbations on NIR spectra during the monitoring of a polymorph conversion process prior to self-modelling mixture analysis. J. Pharm. Biomed. Anal. 1998, 17:141-152.
    • (1998) J. Pharm. Biomed. Anal. , vol.17 , pp. 141-152
    • DeBraekeleer, K.1    Sanchez, F.C.2    Hailey, P.A.3    Sharp, D.C.A.4    Pettman, A.J.5    Massart, D.L.6
  • 8
    • 0031249375 scopus 로고    scopus 로고
    • Real-time analysis of light alkenes at elevated temperatures and pressures by fiber-optic near-infrared spectroscopy
    • Yalvac E.D., Seasholtz M.B., Beach M.A., Crouch S.R. Real-time analysis of light alkenes at elevated temperatures and pressures by fiber-optic near-infrared spectroscopy. Appl. Spectrosc. 1997, 51:1565-1572.
    • (1997) Appl. Spectrosc. , vol.51 , pp. 1565-1572
    • Yalvac, E.D.1    Seasholtz, M.B.2    Beach, M.A.3    Crouch, S.R.4
  • 9
    • 34948818151 scopus 로고    scopus 로고
    • The impact of temperature variations on spectroscopic calibration modelling: a comparative study
    • Chen T., Martin E. The impact of temperature variations on spectroscopic calibration modelling: a comparative study. J. Chemometr. 2007, 21:198-207.
    • (2007) J. Chemometr. , vol.21 , pp. 198-207
    • Chen, T.1    Martin, E.2
  • 10
    • 0034229591 scopus 로고    scopus 로고
    • Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration
    • Brown C.D., Vega-Montoto L., Wentzell P.D. Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration. Appl. Spectrosc. 2000, 54:1055-1068.
    • (2000) Appl. Spectrosc. , vol.54 , pp. 1055-1068
    • Brown, C.D.1    Vega-Montoto, L.2    Wentzell, P.D.3
  • 11
    • 38149123976 scopus 로고    scopus 로고
    • The application of direct orthogonal signal correction for linear and non-linear multivariate calibration
    • Zhu D.Z., Ji B.P., Meng C.Y., Shi B.L., Tu Z.H., Qing Z.S. The application of direct orthogonal signal correction for linear and non-linear multivariate calibration. Chemom. Intell. Lab. Syst. 2008, 90:108-115.
    • (2008) Chemom. Intell. Lab. Syst. , vol.90 , pp. 108-115
    • Zhu, D.Z.1    Ji, B.P.2    Meng, C.Y.3    Shi, B.L.4    Tu, Z.H.5    Qing, Z.S.6
  • 12
    • 27644568090 scopus 로고    scopus 로고
    • Empirical preprocessing methods and their impact on NIR calibrations: a simulation study
    • Thennadil S.N., Martin E.B. Empirical preprocessing methods and their impact on NIR calibrations: a simulation study. J. Chemometr. 2005, 19:77-89.
    • (2005) J. Chemometr. , vol.19 , pp. 77-89
    • Thennadil, S.N.1    Martin, E.B.2
  • 13
    • 0024701578 scopus 로고
    • Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
    • Barnes R.J., Dhanoa M.S., Lister S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43:772-777.
    • (1989) Appl. Spectrosc. , vol.43 , pp. 772-777
    • Barnes, R.J.1    Dhanoa, M.S.2    Lister, S.J.3
  • 14
    • 0037314976 scopus 로고    scopus 로고
    • Light scattering and light absorbance separated by extended multiplicative signal correction
    • Martens H., Nielsen J.P., Engelsen S.B. Light scattering and light absorbance separated by extended multiplicative signal correction. Anal. Chem. 2003, 75:394-404.
    • (2003) Anal. Chem. , vol.75 , pp. 394-404
    • Martens, H.1    Nielsen, J.P.2    Engelsen, S.B.3
  • 15
    • 0001594118 scopus 로고
    • Nonlinear multivariate calibration using principal components regression and artificial neural networks
    • Gemperline P.J., Long J.R., Gregoriou V.G. Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal. Chem. 1991, 63:2313-2323.
    • (1991) Anal. Chem. , vol.63 , pp. 2313-2323
    • Gemperline, P.J.1    Long, J.R.2    Gregoriou, V.G.3
  • 16
    • 0034788467 scopus 로고    scopus 로고
    • Artificial neural network for the quantitative analysis of air toxic VOCs
    • Li Y., Wang J., Chen Z.R., Zhou X.T. Artificial neural network for the quantitative analysis of air toxic VOCs. Anal. Lett. 2001, 34:2203-2219.
    • (2001) Anal. Lett. , vol.34 , pp. 2203-2219
    • Li, Y.1    Wang, J.2    Chen, Z.R.3    Zhou, X.T.4
  • 17
    • 0001530159 scopus 로고
    • Spectroscopic calibration and quantitation using artificial neural networks
    • Long J.R., Gregoriou V.G., Gemperline P.J. Spectroscopic calibration and quantitation using artificial neural networks. Anal. Chem. 1990, 62:1791-1797.
    • (1990) Anal. Chem. , vol.62 , pp. 1791-1797
    • Long, J.R.1    Gregoriou, V.G.2    Gemperline, P.J.3
  • 18
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • Chen T., Morris J., Martin E. Gaussian process regression for multivariate spectroscopic calibration. Chemom. Intell. Lab. Syst. 2007, 87:59-67.
    • (2007) Chemom. Intell. Lab. Syst. , vol.87 , pp. 59-67
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 19
    • 0002978835 scopus 로고
    • Curve fitting and optimal design for prediction
    • O'Hagan A. Curve fitting and optimal design for prediction. J. R. Stat. Soc. B Methodol. 1978, 40:1-42.
    • (1978) J. R. Stat. Soc. B Methodol. , vol.40 , pp. 1-42
    • O'Hagan, A.1
  • 20
    • 0342732860 scopus 로고    scopus 로고
    • Linear techniques to correct for temperature-induced spectral variation in multivariate calibration
    • Wulfert F., Kok W.T., de Noord O.E., Smilde A.K. Linear techniques to correct for temperature-induced spectral variation in multivariate calibration. Chemom. Intell. Lab. Syst. 2000, 51:189-200.
    • (2000) Chemom. Intell. Lab. Syst. , vol.51 , pp. 189-200
    • Wulfert, F.1    Kok, W.T.2    de Noord, O.E.3    Smilde, A.K.4
  • 22
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost.RT, an improved boosting scheme for regression
    • Shrestha D.L., Solomatine D.P. Experiments with AdaBoost.RT, an improved boosting scheme for regression. Neural Comput. 2006, 18:1678-1710.
    • (2006) Neural Comput. , vol.18 , pp. 1678-1710
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 23
    • 0032122727 scopus 로고    scopus 로고
    • Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates
    • Ormoneit D., Tresp V. Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates. IEEE Trans. Neural Netw. 1998, 9:639-650.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , pp. 639-650
    • Ormoneit, D.1    Tresp, V.2
  • 24
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 25
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L. Stacked regressions. Mach. Learn. 1996, 24:49-64.
    • (1996) Mach. Learn. , vol.24 , pp. 49-64
    • Breiman, L.1
  • 26
    • 0002344794 scopus 로고
    • 1977 RIETZ lecture-bootstrap methods-another look at the Jackknife
    • Efron B. 1977 RIETZ lecture-bootstrap methods-another look at the Jackknife. Ann. Stat. 1979, 7:1-26.
    • (1979) Ann. Stat. , vol.7 , pp. 1-26
    • Efron, B.1
  • 27
    • 0001077032 scopus 로고
    • Nonparametric estimates of standard error-the Jackknife, the bootstrap and other methods
    • Efron B. Nonparametric estimates of standard error-the Jackknife, the bootstrap and other methods. Biometrika 1981, 68:589-599.
    • (1981) Biometrika , vol.68 , pp. 589-599
    • Efron, B.1
  • 28
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • Dudoit S., Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 2003, 19:1090-1099.
    • (2003) Bioinformatics , vol.19 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 29
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 1999, 36:105-139.
    • (1999) Mach. Learn. , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 30
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 2000, 40:139-157.
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 31
    • 0035391107 scopus 로고    scopus 로고
    • Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging
    • Gencay R., Qi M. Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging. IEEE Trans. Neural Netw. 2001, 12:726-734.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , pp. 726-734
    • Gencay, R.1    Qi, M.2
  • 32
    • 0031197013 scopus 로고    scopus 로고
    • Improved option pricing using artificial neural networks and bootstrap methods
    • Lajbcygier P.R., Connor J.T. Improved option pricing using artificial neural networks and bootstrap methods. Int. J. Neural Syst. 1997, 8:457-471.
    • (1997) Int. J. Neural Syst. , vol.8 , pp. 457-471
    • Lajbcygier, P.R.1    Connor, J.T.2
  • 33
    • 11844288302 scopus 로고    scopus 로고
    • Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks
    • Sugimoto M., Kikuchi S., Arita M., Soga T., Nishioka T., Tomita M. Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks. Anal. Chem. 2005, 77:78-84.
    • (2005) Anal. Chem. , vol.77 , pp. 78-84
    • Sugimoto, M.1    Kikuchi, S.2    Arita, M.3    Soga, T.4    Nishioka, T.5    Tomita, M.6
  • 34
    • 0000078841 scopus 로고    scopus 로고
    • Averaging regularized estimators
    • Taniguchi M., Tresp V. Averaging regularized estimators. Neural Comput. 1997, 9:1163-1178.
    • (1997) Neural Comput. , vol.9 , pp. 1163-1178
    • Taniguchi, M.1    Tresp, V.2
  • 35
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Netw. 1992, 5:241-259.
    • (1992) Neural Netw. , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 36
    • 0032804290 scopus 로고    scopus 로고
    • Inferential estimation of polymer quality using bootstrap aggregated neural networks
    • Zhang J. Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Netw. 1999, 12:927-938.
    • (1999) Neural Netw. , vol.12 , pp. 927-938
    • Zhang, J.1
  • 38
    • 61849183105 scopus 로고    scopus 로고
    • Bagging for Gaussian process regression
    • Chen T., Ren J.H. Bagging for Gaussian process regression. Neurocomputing 2009, 72:1605-1610.
    • (2009) Neurocomputing , vol.72 , pp. 1605-1610
    • Chen, T.1    Ren, J.H.2
  • 40
    • 0035575477 scopus 로고    scopus 로고
    • Using iterated bagging to debias regressions
    • Breiman L. Using iterated bagging to debias regressions. Mach. Learn. 2001, 45:261-277.
    • (2001) Mach. Learn. , vol.45 , pp. 261-277
    • Breiman, L.1
  • 41
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • Buhlmann P., Yu B. Analyzing bagging. Ann. Stat. 2002, 30:927-961.
    • (2002) Ann. Stat. , vol.30 , pp. 927-961
    • Buhlmann, P.1    Yu, B.2
  • 44
    • 84894887900 scopus 로고
    • Computaer aided design of experiments
    • Kennard R.W., Stone L.A. Computaer aided design of experiments. Technometrics 1969, 11:137-148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 47
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay D.J.C. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992, 4:448-472.
    • (1992) Neural Comput. , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 48
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackay D.J.C. Bayesian interpolation. Neural Comput. 1992, 4:415-447.
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 49
    • 0029754435 scopus 로고    scopus 로고
    • Review of Bayesian neural networks with an application to near infrared spectroscopy
    • Thodberg H.H. Review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Trans. Neural Netw. 1996, 7:56-72.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , pp. 56-72
    • Thodberg, H.H.1
  • 52
    • 0037186681 scopus 로고    scopus 로고
    • Comput. Improving nonparametric regression methods by bagging and boosting
    • Borra S., Di Ciaccio A. Comput. Improving nonparametric regression methods by bagging and boosting. Stat. Data Anal. 2002, 38:407-420.
    • (2002) Stat. Data Anal. , vol.38 , pp. 407-420
    • Borra, S.1    Di Ciaccio, A.2
  • 53
    • 0036737859 scopus 로고    scopus 로고
    • Near-infrared absorption and scattering separated by extended inverted signal correction (EISC): analysis of near-infrared transmittance spectra of single wheat seeds
    • Pedersen D.K., Martens H., Nielsen J.P., Engelsen S.B. Near-infrared absorption and scattering separated by extended inverted signal correction (EISC): analysis of near-infrared transmittance spectra of single wheat seeds. Appl. Spectrosc. 2002, 56:1206-1214.
    • (2002) Appl. Spectrosc. , vol.56 , pp. 1206-1214
    • Pedersen, D.K.1    Martens, H.2    Nielsen, J.P.3    Engelsen, S.B.4
  • 54
    • 54949109779 scopus 로고    scopus 로고
    • Accurate prediction of aquatic toxicity of aromatic compounds based on genetic algorithm and least squares support vector machines
    • Lei B.L., Li J.Z., Liu H.X., Yao X.J. Accurate prediction of aquatic toxicity of aromatic compounds based on genetic algorithm and least squares support vector machines. QSAR Comb. Sci. 2008, 27:850-865.
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 850-865
    • Lei, B.L.1    Li, J.Z.2    Liu, H.X.3    Yao, X.J.4
  • 55
    • 13444287831 scopus 로고    scopus 로고
    • ROBPCA: a new approach to robust principal component analysis
    • Hubert M., Rousseeuw P.J., Vanden Branden K. ROBPCA: a new approach to robust principal component analysis. Technometrics 2005, 47:64-79.
    • (2005) Technometrics , vol.47 , pp. 64-79
    • Hubert, M.1    Rousseeuw, P.J.2    Vanden Branden, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.