메뉴 건너뛰기




Volumn 105, Issue 1, 2011, Pages 19-26

TinyLVR: A utility for viewing single predictor multivariate models in terms of a two factor latent vector model

Author keywords

Bi plots; Multivariate; OPLS; Regression model interpretation; Target projection

Indexed keywords

CAFFEINE;

EID: 78650926522     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2010.10.006     Document Type: Article
Times cited : (4)

References (28)
  • 1
    • 0041817676 scopus 로고    scopus 로고
    • Compression into two-component PLS factorizations
    • Ergon R. Compression into two-component PLS factorizations. J. Chemom. 2003, 17:303-312.
    • (2003) J. Chemom. , vol.17 , pp. 303-312
    • Ergon, R.1
  • 3
    • 4143114481 scopus 로고    scopus 로고
    • Prediction and spectral profile estimation in multivariate calibration
    • Trygg J. Prediction and spectral profile estimation in multivariate calibration. J. Chemom. 2004, 18:166-172.
    • (2004) J. Chemom. , vol.18 , pp. 166-172
    • Trygg, J.1
  • 4
    • 0036083139 scopus 로고    scopus 로고
    • Orthogonal projections to latent structures (O-PLS)
    • Trygg J., Wold S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16:119-128.
    • (2002) J. Chemom. , vol.16 , pp. 119-128
    • Trygg, J.1    Wold, S.2
  • 5
    • 71849091115 scopus 로고    scopus 로고
    • Notes on the practical utility of OPLS. TrAC
    • Tapp H.S., Kemsley E.K. Notes on the practical utility of OPLS. TrAC. Trends Anal. Chem. 2009, 28:1322-1327.
    • (2009) Trends Anal. Chem. , vol.28 , pp. 1322-1327
    • Tapp, H.S.1    Kemsley, E.K.2
  • 6
    • 33644845406 scopus 로고    scopus 로고
    • Reduced PCR/PLSR models by subspace projections
    • Ergon R. Reduced PCR/PLSR models by subspace projections. Chemom. Intell. Lab. Syst. 2006, 81:68-73.
    • (2006) Chemom. Intell. Lab. Syst. , vol.81 , pp. 68-73
    • Ergon, R.1
  • 7
    • 57649225419 scopus 로고    scopus 로고
    • Informative score-loading-contribution plots for multi-response process monitoring
    • Ergon R. Informative score-loading-contribution plots for multi-response process monitoring. Chemom. Intell. Lab. Syst. 2009, 95:31-34.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , pp. 31-34
    • Ergon, R.1
  • 8
    • 3242677036 scopus 로고    scopus 로고
    • Informative PLS score-loading plots for process understanding and monitoring
    • Ergon R. Informative PLS score-loading plots for process understanding and monitoring. J. Process Control 2004, 14:889-897.
    • (2004) J. Process Control , vol.14 , pp. 889-897
    • Ergon, R.1
  • 9
    • 38949169580 scopus 로고    scopus 로고
    • Finding Y-relevant part of X by use of PCR and PLSR model reduction methods
    • Ergon R. Finding Y-relevant part of X by use of PCR and PLSR model reduction methods. J. Chemom. 2007, 21:537-546.
    • (2007) J. Chemom. , vol.21 , pp. 537-546
    • Ergon, R.1
  • 10
    • 0036083363 scopus 로고    scopus 로고
    • An investigation of orthogonal signal correction algorithms and their characteristics
    • Svensson O., Kourti T., MacGregor J.F. An investigation of orthogonal signal correction algorithms and their characteristics. J. Chemom. 2002, 16:176-188.
    • (2002) J. Chemom. , vol.16 , pp. 176-188
    • Svensson, O.1    Kourti, T.2    MacGregor, J.F.3
  • 11
    • 23044451432 scopus 로고    scopus 로고
    • PLS post-processing by similarity transformation (PLS+ST): a simple alternative to OPLS
    • Ergon R. PLS post-processing by similarity transformation (PLS+ST): a simple alternative to OPLS. J. Chemom. 2005, 19:1-4.
    • (2005) J. Chemom. , vol.19 , pp. 1-4
    • Ergon, R.1
  • 12
    • 67649172630 scopus 로고    scopus 로고
    • OPLS filtered data can be obtained directly from non-orthogonalized PLS1
    • Kemsley E.K., Tapp H.S. OPLS filtered data can be obtained directly from non-orthogonalized PLS1. J. Chemom. 2009, 23:263-264.
    • (2009) J. Chemom. , vol.23 , pp. 263-264
    • Kemsley, E.K.1    Tapp, H.S.2
  • 13
    • 67349184379 scopus 로고    scopus 로고
    • The use of net analyte signal (NAS) in near infrared spectroscopy pharmaceutical applications: Interpretability and figures of merit
    • Sarraguca M.C., Lopes J.A. The use of net analyte signal (NAS) in near infrared spectroscopy pharmaceutical applications: Interpretability and figures of merit. Anal. Chim. Acta 2009, 642:179-185.
    • (2009) Anal. Chim. Acta , vol.642 , pp. 179-185
    • Sarraguca, M.C.1    Lopes, J.A.2
  • 14
    • 33751431522 scopus 로고    scopus 로고
    • Chemometrics and near-infrared spectroscopy: avoiding the pitfalls, TrAC
    • Small G.W. Chemometrics and near-infrared spectroscopy: avoiding the pitfalls, TrAC. Trends Anal. Chem. 2006, 25:1057-1066.
    • (2006) Trends Anal. Chem. , vol.25 , pp. 1057-1066
    • Small, G.W.1
  • 15
    • 60149091010 scopus 로고    scopus 로고
    • Re-interpretation of NIPALS results solves PLSR inconsistency problem
    • Ergon R. Re-interpretation of NIPALS results solves PLSR inconsistency problem. J. Chemom. 2009, 23:72-75.
    • (2009) J. Chemom. , vol.23 , pp. 72-75
    • Ergon, R.1
  • 16
    • 34548797039 scopus 로고    scopus 로고
    • The model space in partial least squares regression
    • Pell R.J., Ramos L.S., Manne R. The model space in partial least squares regression. J. Chemom. 2007, 21:165-172.
    • (2007) J. Chemom. , vol.21 , pp. 165-172
    • Pell, R.J.1    Ramos, L.S.2    Manne, R.3
  • 17
    • 63049100737 scopus 로고    scopus 로고
    • Critical factors limiting the interpretation of regression vectors in multivariate calibration, TrAC
    • Brown C.D., Green R.L. Critical factors limiting the interpretation of regression vectors in multivariate calibration, TrAC. Trends Anal. Chem. 2009, 28:506-514.
    • (2009) Trends Anal. Chem. , vol.28 , pp. 506-514
    • Brown, C.D.1    Green, R.L.2
  • 18
    • 77952606741 scopus 로고    scopus 로고
    • Multivariate calibration leverages and spectral F-ratios via the filter factor representation
    • Andries E., Kalivas J.H. Multivariate calibration leverages and spectral F-ratios via the filter factor representation. J. Chemom. 2010, 24:249-260.
    • (2010) J. Chemom. , vol.24 , pp. 249-260
    • Andries, E.1    Kalivas, J.H.2
  • 20
    • 58549103714 scopus 로고    scopus 로고
    • X-tended target projection (XTP) - comparison with orthogonal partial least squares (OPLS) and PLS post-processing by similarity transformation (PLS+ST)
    • Kvalheim O.M., Rajalahti T., Arneberg R. X-tended target projection (XTP) - comparison with orthogonal partial least squares (OPLS) and PLS post-processing by similarity transformation (PLS+ST). J. Chemom. 2009, 23:49-55.
    • (2009) J. Chemom. , vol.23 , pp. 49-55
    • Kvalheim, O.M.1    Rajalahti, T.2    Arneberg, R.3
  • 21
    • 77954355416 scopus 로고    scopus 로고
    • Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots
    • online
    • Kvalheim O.M. Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots. J. Chemom. 2010, online. 10.1002/cem.1289.
    • (2010) J. Chemom.
    • Kvalheim, O.M.1
  • 22
    • 0000928446 scopus 로고    scopus 로고
    • Near- and mid-infrared spectroscopies in food authentication: coffee varietal identification
    • Downey G., Briandet R., Wilson R.H., Kemsley E.K. Near- and mid-infrared spectroscopies in food authentication: coffee varietal identification. J. Agric. Food Chem. 1997, 45:4357-4361.
    • (1997) J. Agric. Food Chem. , vol.45 , pp. 4357-4361
    • Downey, G.1    Briandet, R.2    Wilson, R.H.3    Kemsley, E.K.4
  • 25
    • 0041408309 scopus 로고    scopus 로고
    • Optimised score plot by principal components of predictions
    • Langsrud Ø., Næs T. Optimised score plot by principal components of predictions. Chemom. Intell. Lab. Syst. 2003, 68:61-74.
    • (2003) Chemom. Intell. Lab. Syst. , vol.68 , pp. 61-74
    • Langsrud, Ø.1    Næs, T.2
  • 26
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 1996, 58:267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67:301-320.
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.