메뉴 건너뛰기




Volumn 6466 LNCS, Issue , 2010, Pages 404-415

Bio inspired swarm algorithm for tumor detection in digital mammogram

Author keywords

Computer Aided Diagnosis; Fuzzy C Means Gabor features; Integer wavelet transform (IWT); Mammograms; Microcalcification; Particle Swarm Optimisation

Indexed keywords

FUZZY C MEAN; INTEGER WAVELET TRANSFORMS; MAMMOGRAMS; MICROCALCIFICATIONS; PARTICLE SWARM OPTIMISATION; GABOR FEATURE;

EID: 78650902732     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-17563-3_49     Document Type: Conference Paper
Times cited : (6)

References (31)
  • 1
    • 27944509149 scopus 로고    scopus 로고
    • Outcome of Screening by clinical examination of the breast in a trial in the phillipines
    • Pisani, et al.: Outcome of Screening by clinical examination of the breast in a trial in the phillipines. Int. J. Cancer (2006)
    • (2006) Int. J. Cancer
    • Pisani1
  • 2
    • 0004233960 scopus 로고
    • J.B.Lippincoff, Philadelphia
    • Kopans, D.B.: Breast Imaging, pp. 81-95. J.B.Lippincoff, Philadelphia (1989)
    • (1989) Breast Imaging , pp. 81-95
    • Kopans, D.B.1
  • 4
    • 0030270445 scopus 로고    scopus 로고
    • Classificaiton of Mass and Normal Breast Tissue: A convolution Neural Network classifier with spatial domain and Texture Images
    • Sahiner, B., et al.: Classificaiton of Mass and Normal Breast Tissue: A convolution Neural Network classifier with spatial domain and Texture Images. IEEE trans. on Medical Imaging 15(5), 598-609 (1996)
    • (1996) IEEE Trans. on Medical Imaging , vol.15 , Issue.5 , pp. 598-609
    • Sahiner, B.1
  • 5
    • 19044383038 scopus 로고    scopus 로고
    • A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcificaitons
    • Liangei, et al.: A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcificaitons. IEEE Trans. on Medical Imaging 24(3), 371-380 (2005)
    • (2005) IEEE Trans. on Medical Imaging , vol.24 , Issue.3 , pp. 371-380
    • Liangei1
  • 6
    • 33750420263 scopus 로고    scopus 로고
    • Mammogram Segmentation by Contour Searching and Mass Lesions Classification with Neural Network
    • Cascio, D., et al.: Mammogram Segmentation by Contour Searching and Mass Lesions Classification with Neural Network. IEEE Trans. on Nuclear Science 53(5), 2827-2833 (2006)
    • (2006) IEEE Trans. on Nuclear Science , vol.53 , Issue.5 , pp. 2827-2833
    • Cascio, D.1
  • 7
    • 0032587727 scopus 로고    scopus 로고
    • Statistical Textural Features for Detection of MIcrocalcifications in Digitized Mammograms
    • Kim, J.K., Park, H.W.: Statistical Textural Features for Detection of MIcrocalcifications in Digitized Mammograms. IEEE Trans. on Medical Imaging 18(3), 231-238 (1999)
    • (1999) IEEE Trans. on Medical Imaging , vol.18 , Issue.3 , pp. 231-238
    • Kim, J.K.1    Park, H.W.2
  • 8
    • 0030129835 scopus 로고    scopus 로고
    • Wavelet Transforms for Detecting Microcalcificaitons in Mammograms
    • Strickland, R.N., Hahn: Wavelet Transforms for Detecting Microcalcificaitons in Mammograms. IEEE Trans. on Medical Imaging 15(2), 218-229 (1996)
    • (1996) IEEE Trans. on Medical Imaging , vol.15 , Issue.2 , pp. 218-229
    • Strickland, R.N.1    Hahn2
  • 9
    • 0032129156 scopus 로고    scopus 로고
    • Detection of Microcalcifications in Digital Mammograms Using Wavelets
    • Wang, T.C., et al.: Detection of Microcalcifications in Digital Mammograms Using Wavelets. IEEE Trans. on Medical Imaging 1(4), 498-509 (1998)
    • (1998) IEEE Trans. on Medical Imaging , vol.1 , Issue.4 , pp. 498-509
    • Wang, T.C.1
  • 10
    • 0035263429 scopus 로고    scopus 로고
    • A computer Aided Diagnosis System for Digital Mammogram Based on Fuzzy Neural and Feature Extraction Techniques
    • Verma, B., Zakos, J.: A computer Aided Diagnosis System for Digital Mammogram Based on Fuzzy Neural and Feature Extraction Techniques. IEEE Trans, on Informaiton Technology in Biomedicine 5(1), 46-54 (2001)
    • (2001) IEEE Trans, on Informaiton Technology in Biomedicine , vol.5 , Issue.1 , pp. 46-54
    • Verma, B.1    Zakos, J.2
  • 11
    • 72249109613 scopus 로고    scopus 로고
    • Use of Normal Tissue Context in Computer Aided Detection of masses in Mamograms
    • Hopse, R., Karssemeijer, N.: Use of Normal Tissue Context in Computer Aided Detection of masses in Mamograms. IEEE Trans. on Medical Imaging 28(12), 2033-2041 (2009)
    • (2009) IEEE Trans. on Medical Imaging , vol.28 , Issue.12 , pp. 2033-2041
    • Hopse, R.1    Karssemeijer, N.2
  • 12
    • 12944315569 scopus 로고    scopus 로고
    • Cancer incidence, mortality and prevalence worldwide
    • version 2.0, IARC press, Lyon
    • Ferlay, J., et al.: cancer incidence, mortality and prevalence worldwide. In: GLOBOCAN 2002, IARC cancer base No.5 version 2.0, IARC press, Lyon (2004)
    • (2004) GLOBOCAN 2002, IARC Cancer Base No.5
    • Ferlay, J.1
  • 13
    • 77950187218 scopus 로고    scopus 로고
    • Detection of microcalcifications in digital mammograms using combined model-based and statistical textural features
    • Yu, S.-N., Huang, Y.-K.: Detection of microcalcifications in digital mammograms using combined model-based and statistical textural features. Expert Systems with Applications 37, 5461-5469 (2010)
    • (2010) Expert Systems with Applications , vol.37 , pp. 5461-5469
    • Yu, S.-N.1    Huang, Y.-K.2
  • 14
    • 77949561690 scopus 로고    scopus 로고
    • American Cancer Society American Cancer Society, Inc., Atlanta
    • American Cancer Society. Breast cancer facts and figures 2009-2010. American Cancer Society, Inc., Atlanta (2009a)
    • (2009) Breast Cancer Facts and Figures 2009-2010
  • 18
    • 0031192257 scopus 로고    scopus 로고
    • Clustering by Competitive Agglomeration
    • Frigui, H., Krishnapuram, R.: Clustering by Competitive Agglomeration. Pattern Recognition Letters 30(7), 1109-1119 (1997)
    • (1997) Pattern Recognition Letters , vol.30 , Issue.7 , pp. 1109-1119
    • Frigui, H.1    Krishnapuram, R.2
  • 20
    • 78650873246 scopus 로고    scopus 로고
    • ISO/IEC FCD 15 444-1V1.0. December
    • ISO/IEC FCD 15 444-1V1.0. (December 1999), http://www.jpeg.org/public/ fcd15444-1.pdf
    • (1999)
  • 21
    • 0032202963 scopus 로고    scopus 로고
    • Rate-distortion methods for image and video compression
    • Ortega, A., Ramchandran, K.: Rate-distortion methods for image and video compression. IEEE Signal Processing Mag. 15, 23-50 (1998)
    • (1998) IEEE Signal Processing Mag , vol.15 , pp. 23-50
    • Ortega, A.1    Ramchandran, K.2
  • 23
    • 0030173121 scopus 로고    scopus 로고
    • A new, fast, and efficient image codec based on set partitioning in hierarchical trees
    • Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits, Syst. Video Technol. 6, 243-250 (1996)
    • (1996) IEEE Trans. Circuits, Syst. Video Technol. , vol.6 , pp. 243-250
    • Said, A.1    Pearlman, W.A.2
  • 25
    • 33847703333 scopus 로고    scopus 로고
    • Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition
    • Zhang, B.: Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition. IEEE Transactions on Image Processing 16(1), 57-68 (2007)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.1 , pp. 57-68
    • Zhang, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.