-
1
-
-
0036301043
-
Cyclic nucleotide-gated ion channels
-
Kaupp U.B., Seifert R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 2002, 82:769-824.
-
(2002)
Physiol. Rev.
, vol.82
, pp. 769-824
-
-
Kaupp, U.B.1
Seifert, R.2
-
2
-
-
77249084576
-
Olfactory signalling in vertebrates and insects: differences and commonalities
-
Kaupp U.B. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat. Rev. Neurosci. 2010, 11:188-200.
-
(2010)
Nat. Rev. Neurosci.
, vol.11
, pp. 188-200
-
-
Kaupp, U.B.1
-
3
-
-
70349792168
-
Phototransduction motifs and variations
-
Yau K.W., Hardie R.C. Phototransduction motifs and variations. Cell 2009, 139:246-264.
-
(2009)
Cell
, vol.139
, pp. 246-264
-
-
Yau, K.W.1
Hardie, R.C.2
-
4
-
-
0037028014
-
Subunit stoichiometry of the CNG channel of rod photoreceptors
-
Weitz D., et al. Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 2002, 36:881-889.
-
(2002)
Neuron
, vol.36
, pp. 881-889
-
-
Weitz, D.1
-
5
-
-
0037028016
-
Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit
-
Zheng J., et al. Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 2002, 36:891-896.
-
(2002)
Neuron
, vol.36
, pp. 891-896
-
-
Zheng, J.1
-
6
-
-
0037078979
-
The heteromeric cyclic nucleotide gated channel adopts a 3A:1B stoichiometry
-
Zhong H., et al. The heteromeric cyclic nucleotide gated channel adopts a 3A:1B stoichiometry. Nature 2002, 420:193-198.
-
(2002)
Nature
, vol.420
, pp. 193-198
-
-
Zhong, H.1
-
7
-
-
2342548656
-
Subunit configuration of heteromeric cone cyclic nucleotide-gated channels
-
Peng C., et al. Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron 2004, 42:401-410.
-
(2004)
Neuron
, vol.42
, pp. 401-410
-
-
Peng, C.1
-
8
-
-
2342554303
-
Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels
-
Zheng J., Zagotta W.N. Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 2004, 42:411-421.
-
(2004)
Neuron
, vol.42
, pp. 411-421
-
-
Zheng, J.1
Zagotta, W.N.2
-
9
-
-
0242302894
-
The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits
-
Bönigk W., et al. The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J. Neurosci. 1999, 19:5332-5347.
-
(1999)
J. Neurosci.
, vol.19
, pp. 5332-5347
-
-
Bönigk, W.1
-
10
-
-
0032417420
-
The moving parts of voltage-gated ion channels
-
Yellen G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 1998, 31:239-295.
-
(1998)
Q. Rev. Biophys.
, vol.31
, pp. 239-295
-
-
Yellen, G.1
-
11
-
-
0141831003
-
Structural basis for modulation and agonist specificity of HCN pacemaker channels
-
Zagotta W.N., et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 2003, 425:200-205.
-
(2003)
Nature
, vol.425
, pp. 200-205
-
-
Zagotta, W.N.1
-
12
-
-
33645313112
-
CNG and HCN channels: Two peas, one pod
-
Craven K.B., Zagotta W.N. CNG and HCN channels: Two peas, one pod. Annu. Rev. Physiol. 2006, 68:375-401.
-
(2006)
Annu. Rev. Physiol.
, vol.68
, pp. 375-401
-
-
Craven, K.B.1
Zagotta, W.N.2
-
13
-
-
9644268202
-
A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization
-
Zhou L., et al. A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization. Neuron 2004, 44:823-834.
-
(2004)
Neuron
, vol.44
, pp. 823-834
-
-
Zhou, L.1
-
14
-
-
3042825009
-
Calmodulin permanently associates with rat olfactory CNG channels under native conditions
-
Bradley J., et al. Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat. Neurosci. 2004, 7:705-710.
-
(2004)
Nat. Neurosci.
, vol.7
, pp. 705-710
-
-
Bradley, J.1
-
15
-
-
34547625430
-
Subunits act independently in a cyclic nucleotide-activated K+ channel
-
Cukkemane A., et al. Subunits act independently in a cyclic nucleotide-activated K+ channel. EMBO Rep. 2007, 8:749-755.
-
(2007)
EMBO Rep.
, vol.8
, pp. 749-755
-
-
Cukkemane, A.1
-
16
-
-
4544298098
-
A cyclic nucleotide modulated prokaryotic K+ channel
-
Nimigean C.M., et al. A cyclic nucleotide modulated prokaryotic K+ channel. J. Gen. Physiol. 2004, 124:203-210.
-
(2004)
J. Gen. Physiol.
, vol.124
, pp. 203-210
-
-
Nimigean, C.M.1
-
17
-
-
8844263765
-
Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel
-
Clayton G.M., et al. Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel. Cell 2004, 119:615-627.
-
(2004)
Cell
, vol.119
, pp. 615-627
-
-
Clayton, G.M.1
-
18
-
-
74049087172
-
An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis
-
2, ra68
-
Bönigk, W. et al. (2009) An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis. Sci. Signal. 2, ra68.
-
(2009)
Sci. Signal
-
-
Bönigk, W.1
-
19
-
-
33749187944
-
A K+ -selective cGMP-gated ion channel controls chemosensation of sperm
-
Strünker T., et al. A K+ -selective cGMP-gated ion channel controls chemosensation of sperm. Nat. Cell Biol. 2006, 8:1149-1154.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 1149-1154
-
-
Strünker, T.1
-
20
-
-
33846650305
-
Sp-tetraKCNG: A novel cyclic nucleotide gated K+ channel
-
Galindo B.E., et al. Sp-tetraKCNG: A novel cyclic nucleotide gated K+ channel. Biochem. Biophys. Res. Commun. 2007, 354:668-675.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.354
, pp. 668-675
-
-
Galindo, B.E.1
-
21
-
-
0037217433
-
Structure and regulation of the cAMP-binding domains of Epac2
-
Rehmann H., et al. Structure and regulation of the cAMP-binding domains of Epac2. Nat. Struct. Biol. 2003, 10:26-32.
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 26-32
-
-
Rehmann, H.1
-
22
-
-
11844254469
-
The cAMP binding domain: an ancient signaling module
-
Berman H.M., et al. The cAMP binding domain: an ancient signaling module. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:45-50.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 45-50
-
-
Berman, H.M.1
-
23
-
-
0019463941
-
Structure of catabolite gene activator protein at 2.9Å resolution suggests binding to left-handed B-DNA
-
McKay D.B., Steitz T.A. Structure of catabolite gene activator protein at 2.9Å resolution suggests binding to left-handed B-DNA. Nature 1981, 290:744-749.
-
(1981)
Nature
, vol.290
, pp. 744-749
-
-
McKay, D.B.1
Steitz, T.A.2
-
24
-
-
0029143803
-
Regulatory subunit of protein kinase A: Structure of deletion mutant with cAMP binding domains
-
Su Y., et al. Regulatory subunit of protein kinase A: Structure of deletion mutant with cAMP binding domains. Science 1995, 269:807-813.
-
(1995)
Science
, vol.269
, pp. 807-813
-
-
Su, Y.1
-
25
-
-
67650064749
-
Solution structure of the Mesorhizobium loti K1 channel cyclic nucleotide-binding domain in complex with cAMP
-
Schünke S., et al. Solution structure of the Mesorhizobium loti K1 channel cyclic nucleotide-binding domain in complex with cAMP. EMBO Rep. 2009, 10:729-735.
-
(2009)
EMBO Rep.
, vol.10
, pp. 729-735
-
-
Schünke, S.1
-
26
-
-
69949167518
-
Dynamically driven ligand selectivity in cyclic nucleotide binding domains
-
Das R., et al. Dynamically driven ligand selectivity in cyclic nucleotide binding domains. J. Biol. Chem. 2009, 284:23682-23696.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 23682-23696
-
-
Das, R.1
-
27
-
-
33846066294
-
CAMP activation of PKA defines an ancient signaling mechanism
-
Das R., et al. cAMP activation of PKA defines an ancient signaling mechanism. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:93-98.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 93-98
-
-
Das, R.1
-
28
-
-
0032548836
-
A state-independent interaction between ligand and a conserved arginine residue in cyclic nucleotide-gated channels reveals a functional polarity of the cyclic nucleotide binding site
-
Tibbs G.R., et al. A state-independent interaction between ligand and a conserved arginine residue in cyclic nucleotide-gated channels reveals a functional polarity of the cyclic nucleotide binding site. J. Biol. Chem. 1998, 273:4497-4505.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 4497-4505
-
-
Tibbs, G.R.1
-
29
-
-
39449098523
-
Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic development and requires cyclic AMP
-
Harzheim D., et al. Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic development and requires cyclic AMP. EMBO J. 2008, 27:692-703.
-
(2008)
EMBO J.
, vol.27
, pp. 692-703
-
-
Harzheim, D.1
-
30
-
-
2942527724
-
RIα subunit of PKA: A cAMP-free structure reveals a hydrophobic capping mechanism for docking cAMP into site B
-
Wu J., et al. RIα subunit of PKA: A cAMP-free structure reveals a hydrophobic capping mechanism for docking cAMP into site B. Structure 2004, 12:1057-1085.
-
(2004)
Structure
, vol.12
, pp. 1057-1085
-
-
Wu, J.1
-
31
-
-
0024346576
-
Predicted structures of the cGMP binding domains of the cGMP-dependent protein kinase: A key alanine/threonine difference in evolutionary divergence of cAMP and cGMP binding sites
-
Weber I.T., et al. Predicted structures of the cGMP binding domains of the cGMP-dependent protein kinase: A key alanine/threonine difference in evolutionary divergence of cAMP and cGMP binding sites. Biochemistry 1989, 28:6122-6127.
-
(1989)
Biochemistry
, vol.28
, pp. 6122-6127
-
-
Weber, I.T.1
-
32
-
-
0025946606
-
Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium
-
Altenhofen W., et al. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc. Natl. Acad. Sci. U. S. A. 1991, 88:9868-9872.
-
(1991)
Proc. Natl. Acad. Sci. U. S. A.
, vol.88
, pp. 9868-9872
-
-
Altenhofen, W.1
-
33
-
-
47849110347
-
Structural and energetic analysis of activation by a cyclic nucleotide binding domain
-
Altieri S.L., et al. Structural and energetic analysis of activation by a cyclic nucleotide binding domain. J. Mol. Biol. 2008, 381:655-669.
-
(2008)
J. Mol. Biol.
, vol.381
, pp. 655-669
-
-
Altieri, S.L.1
-
34
-
-
0029114464
-
Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels
-
Varnum M.D., et al. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 1995, 15:619-625.
-
(1995)
Neuron
, vol.15
, pp. 619-625
-
-
Varnum, M.D.1
-
35
-
-
0942265546
-
Distinct structural determinants of efficacy and sensitivity in the ligand-binding domain of cyclic nucleotide-gated channels
-
Young E.C., Krougliak N. Distinct structural determinants of efficacy and sensitivity in the ligand-binding domain of cyclic nucleotide-gated channels. J. Biol. Chem. 2004, 279:3553-3562.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 3553-3562
-
-
Young, E.C.1
Krougliak, N.2
-
36
-
-
0035163146
-
Efficient coupling of ligand binding to channel opening by the binding domain of a modulatory (beta) subunit of the olfactory cyclic nucleotide-gated channel
-
Young E.C., et al. Efficient coupling of ligand binding to channel opening by the binding domain of a modulatory (beta) subunit of the olfactory cyclic nucleotide-gated channel. J. Gen. Physiol. 2001, 118:523-546.
-
(2001)
J. Gen. Physiol.
, vol.118
, pp. 523-546
-
-
Young, E.C.1
-
37
-
-
31844447089
-
Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state
-
Rehmann H., et al. Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 2006, 439:625-628.
-
(2006)
Nature
, vol.439
, pp. 625-628
-
-
Rehmann, H.1
-
38
-
-
33845800991
-
Capturing cyclic nucleotides in action: snapshots from crystallographic studies
-
Rehmann H., et al. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat. Rev. Mol. Cell Biol. 2007, 8:63-73.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 63-73
-
-
Rehmann, H.1
-
39
-
-
34249869012
-
Gating of HCN channels by cyclic nucleotides: Residue contacts that underlie ligand binding, selectivity, and efficacy
-
Zhou L., Siegelbaum S.A. Gating of HCN channels by cyclic nucleotides: Residue contacts that underlie ligand binding, selectivity, and efficacy. Structure 2007, 15:655-670.
-
(2007)
Structure
, vol.15
, pp. 655-670
-
-
Zhou, L.1
Siegelbaum, S.A.2
-
40
-
-
0030778914
-
Single-cyclic nucleotide-gated channels locked in different ligand-bound states
-
Ruiz M.L., Karpen J.W. Single-cyclic nucleotide-gated channels locked in different ligand-bound states. Nature 1997, 389:389-392.
-
(1997)
Nature
, vol.389
, pp. 389-392
-
-
Ruiz, M.L.1
Karpen, J.W.2
-
41
-
-
0032127530
-
Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers
-
Liu D.T., et al. Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron 1998, 21:235-248.
-
(1998)
Neuron
, vol.21
, pp. 235-248
-
-
Liu, D.T.1
-
42
-
-
33947501708
-
Relating ligand binding to activation gating in CNGA2 channels
-
Biskup C., et al. Relating ligand binding to activation gating in CNGA2 channels. Nature 2007, 446:440-443.
-
(2007)
Nature
, vol.446
, pp. 440-443
-
-
Biskup, C.1
-
43
-
-
0033042260
-
Opening mechanism of a cyclic nucleotide-gated channel based on analysis of single channels locked in each liganded state
-
Ruiz M.L., Karpen J.W. Opening mechanism of a cyclic nucleotide-gated channel based on analysis of single channels locked in each liganded state. J. Gen. Physiol. 1999, 113:873-895.
-
(1999)
J. Gen. Physiol.
, vol.113
, pp. 873-895
-
-
Ruiz, M.L.1
Karpen, J.W.2
-
44
-
-
34547598211
-
Ligand binding and activation in a prokaryotic cyclic nucleotide-modulated channel
-
Nimigean C.M., Pagel M.D. Ligand binding and activation in a prokaryotic cyclic nucleotide-modulated channel. J. Mol. Biol. 2007, 371:1325-1337.
-
(2007)
J. Mol. Biol.
, vol.371
, pp. 1325-1337
-
-
Nimigean, C.M.1
Pagel, M.D.2
-
45
-
-
34548243274
-
Patch clamp and phenotypic analyses of a prokaryotic cyclic nucleotide-gated K+ channel using Escherichia coli as a host
-
Kuo M.M.C., et al. Patch clamp and phenotypic analyses of a prokaryotic cyclic nucleotide-gated K+ channel using Escherichia coli as a host. J. Biol. Chem. 2007, 282:24294-24301.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24294-24301
-
-
Kuo, M.M.C.1
-
46
-
-
34548402962
-
The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloK1 at 16Å resolution
-
Chiu P.-L., et al. The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloK1 at 16Å resolution. Structure 2007, 15:1053-1064.
-
(2007)
Structure
, vol.15
, pp. 1053-1064
-
-
Chiu, P.-L.1
-
47
-
-
66049124407
-
Uncooperative voltage sensors
-
Horn R. Uncooperative voltage sensors. J. Gen. Physiol. 2009, 133:463-466.
-
(2009)
J. Gen. Physiol.
, vol.133
, pp. 463-466
-
-
Horn, R.1
-
48
-
-
66049159090
-
A single charged voltage sensor is capable of gating the Shaker K+ channel
-
Gagnon D.G., Bezanilla F. A single charged voltage sensor is capable of gating the Shaker K+ channel. J. Gen. Physiol. 2009, 133:467-483.
-
(2009)
J. Gen. Physiol.
, vol.133
, pp. 467-483
-
-
Gagnon, D.G.1
Bezanilla, F.2
-
49
-
-
14544271928
-
The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path
-
Johnson J.P., Zagotta W.N. The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:2742-2747.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 2742-2747
-
-
Johnson, J.P.1
Zagotta, W.N.2
-
50
-
-
10344247673
-
Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels
-
Craven K.B., Zagotta W.N. Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels. J. Gen. Physiol. 2004, 124:663-677.
-
(2004)
J. Gen. Physiol.
, vol.124
, pp. 663-677
-
-
Craven, K.B.1
Zagotta, W.N.2
-
51
-
-
0028839541
-
Subunit interactions in coordination of Ni2+ in cyclic nucleotide-gated channels
-
Gordon S.E., Zagotta W.N. Subunit interactions in coordination of Ni2+ in cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. U. S. A. 1995, 92:10222-10226.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, pp. 10222-10226
-
-
Gordon, S.E.1
Zagotta, W.N.2
-
52
-
-
0028951220
-
Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels
-
Gordon S.E., Zagotta W.N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron 1995, 14:857-864.
-
(1995)
Neuron
, vol.14
, pp. 857-864
-
-
Gordon, S.E.1
Zagotta, W.N.2
-
53
-
-
0036688712
-
New structural perspectives on K+ channel gating
-
Perozo E. New structural perspectives on K+ channel gating. Structure 2002, 10:1027-1029.
-
(2002)
Structure
, vol.10
, pp. 1027-1029
-
-
Perozo, E.1
-
54
-
-
50949126927
-
Cooperative transition between open and closed conformations in potassium channels
-
Haliloglu T., Ben-Tal N. Cooperative transition between open and closed conformations in potassium channels. PLoS. Comput. Biol. 2008, 4:e1000164.
-
(2008)
PLoS. Comput. Biol.
, vol.4
-
-
Haliloglu, T.1
Ben-Tal, N.2
-
55
-
-
35848950002
-
Conformational dynamics of the KcsA potassium channel governs gating properties
-
Baker K.A., et al. Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct. Mol. Biol. 2007, 14:1089-1095.
-
(2007)
Nat Struct. Mol. Biol.
, vol.14
, pp. 1089-1095
-
-
Baker, K.A.1
-
56
-
-
17044400911
-
A gate in the selectivity filter of potassium channels
-
Berneche S., Roux B. A gate in the selectivity filter of potassium channels. Structure 2005, 13:591-600.
-
(2005)
Structure
, vol.13
, pp. 591-600
-
-
Berneche, S.1
Roux, B.2
-
57
-
-
33750530193
-
Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction
-
Blunck R., et al. Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. J. Gen. Physiol. 2006, 128:569-581.
-
(2006)
J. Gen. Physiol.
, vol.128
, pp. 569-581
-
-
Blunck, R.1
-
58
-
-
33745041507
-
Molecular determinants of gating at the potassium-channel selectivity filter
-
Cordero-Morales J.F., et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 2006, 13:311-318.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 311-318
-
-
Cordero-Morales, J.F.1
-
59
-
-
0037904401
-
A cysteine scan of the inner vestibule of cyclic nucleotide-gated channels reveals architecture and rearrangement of the pore
-
Flynn G.E., Zagotta W.N. A cysteine scan of the inner vestibule of cyclic nucleotide-gated channels reveals architecture and rearrangement of the pore. J. Gen. Physiol. 2003, 121:563-582.
-
(2003)
J. Gen. Physiol.
, vol.121
, pp. 563-582
-
-
Flynn, G.E.1
Zagotta, W.N.2
-
60
-
-
0034520641
-
Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels
-
Liu J., Siegelbaum S.A. Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels. Neuron 2000, 28:899-909.
-
(2000)
Neuron
, vol.28
, pp. 899-909
-
-
Liu, J.1
Siegelbaum, S.A.2
-
61
-
-
0032888454
-
Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of receptor cysteines
-
Becchetti A., et al. Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of receptor cysteines. J. Gen. Physiol. 1999, 114:377-392.
-
(1999)
J. Gen. Physiol.
, vol.114
, pp. 377-392
-
-
Becchetti, A.1
-
62
-
-
0031031447
-
Mechanism of tetracaine block of cyclic nucleotide-gated channels
-
Fodor A.A., et al. Mechanism of tetracaine block of cyclic nucleotide-gated channels. J. Gen. Physiol. 1997, 109:3-14.
-
(1997)
J. Gen. Physiol.
, vol.109
, pp. 3-14
-
-
Fodor, A.A.1
-
63
-
-
42149189419
-
Gating at the selectivity filter in cyclic nucleotide-gated channels
-
Contreras J.E., et al. Gating at the selectivity filter in cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:3310-3314.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 3310-3314
-
-
Contreras, J.E.1
-
64
-
-
40349085541
-
Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel
-
Clayton G.M., et al. Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:1511-1515.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 1511-1515
-
-
Clayton, G.M.1
-
65
-
-
0034977038
-
Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels
-
Flynn G.E., Zagotta W.N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 2001, 30:689-698.
-
(2001)
Neuron
, vol.30
, pp. 689-698
-
-
Flynn, G.E.1
Zagotta, W.N.2
-
66
-
-
0028047839
-
A single negative charge within the pore region of a cGMP-gated channel controls rectification. Ca2+ blockage, and ionic selectivity
-
Eismann E., et al. A single negative charge within the pore region of a cGMP-gated channel controls rectification. Ca2+ blockage, and ionic selectivity. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:1109-1113.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 1109-1113
-
-
Eismann, E.1
-
67
-
-
33645318420
-
Atomic structure of a Na+- and K+-conducting channel
-
Shi N., et al. Atomic structure of a Na+- and K+-conducting channel. Nature 2006, 440:570-574.
-
(2006)
Nature
, vol.440
, pp. 570-574
-
-
Shi, N.1
-
68
-
-
34848884262
-
Structural insight into Ca2+ specificity in tetrameric cation channels
-
Alam A., et al. Structural insight into Ca2+ specificity in tetrameric cation channels. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:15334-15339.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 15334-15339
-
-
Alam, A.1
-
69
-
-
44949236117
-
High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation
-
Altenbach C., et al. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:7439-7444.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 7439-7444
-
-
Altenbach, C.1
-
70
-
-
0029087912
-
Activation of light-dependent K+ channels in ciliary invertebrate photoreceptors involves cGMP but not the IP3/Ca2+ cascade
-
del Pilar G.M., Nasi E. Activation of light-dependent K+ channels in ciliary invertebrate photoreceptors involves cGMP but not the IP3/Ca2+ cascade. Neuron 1995, 15:607-618.
-
(1995)
Neuron
, vol.15
, pp. 607-618
-
-
del Pilar, G.M.1
Nasi, E.2
-
71
-
-
33645087360
-
Parietal-eye phototransduction components and their potential evolutionary implications
-
Su C.-Y., et al. Parietal-eye phototransduction components and their potential evolutionary implications. Science 2006, 311:1617-1621.
-
(2006)
Science
, vol.311
, pp. 1617-1621
-
-
Su, C.-Y.1
-
72
-
-
33644671393
-
An unusual cGMP pathway underlying depolarizing light response of the vertebrate parietal-eye photoreceptor
-
Xiong W.-H., et al. An unusual cGMP pathway underlying depolarizing light response of the vertebrate parietal-eye photoreceptor. Nature Neurosci. 1998, 1:359-365.
-
(1998)
Nature Neurosci.
, vol.1
, pp. 359-365
-
-
Xiong, W.-H.1
-
73
-
-
54249146540
-
Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR
-
Styer K.L., et al. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 2008, 322:460-464.
-
(2008)
Science
, vol.322
, pp. 460-464
-
-
Styer, K.L.1
-
74
-
-
48149103878
-
Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans
-
Ramot D., et al. Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nat. Neurosci. 2008, 11:908-915.
-
(2008)
Nat. Neurosci.
, vol.11
, pp. 908-915
-
-
Ramot, D.1
-
75
-
-
49349103288
-
Ammonium-acetate is sensed by gustatory and olfactory neurons in Caenorhabditis elegans
-
Frokjaer-Jensen C., et al. Ammonium-acetate is sensed by gustatory and olfactory neurons in Caenorhabditis elegans. PLoS ONE 2008, 3:e2467.
-
(2008)
PLoS ONE
, vol.3
-
-
Frokjaer-Jensen, C.1
-
76
-
-
23244432182
-
Neuronal substrates of complex behaviors in C. elegans
-
deBono M., Maricq A.V. Neuronal substrates of complex behaviors in C. elegans. Annu. Rev. Neurosci. 2005, 28:451-501.
-
(2005)
Annu. Rev. Neurosci.
, vol.28
, pp. 451-501
-
-
deBono, M.1
Maricq, A.V.2
-
77
-
-
33751118221
-
Comparative chemosensation from receptors to ecology
-
Bargmann C.I. Comparative chemosensation from receptors to ecology. Nature 2006, 444:295-301.
-
(2006)
Nature
, vol.444
, pp. 295-301
-
-
Bargmann, C.I.1
-
78
-
-
48149099744
-
Light-sensitive neurons and channels mediate phototaxis in C. elegans
-
Ward A., et al. Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat. Neurosci. 2008, 11:916-922.
-
(2008)
Nat. Neurosci.
, vol.11
, pp. 916-922
-
-
Ward, A.1
-
79
-
-
77952885238
-
C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog
-
Liu J., et al. C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat. Neurosci. 2010, 13:715-722.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 715-722
-
-
Liu, J.1
-
80
-
-
44649083709
-
Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion
-
Togashi K., et al. Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion. Neuron 2008, 58:694-707.
-
(2008)
Neuron
, vol.58
, pp. 694-707
-
-
Togashi, K.1
-
81
-
-
39749099859
-
Mechanisms of sperm chemotaxis
-
Kaupp U.B., et al. Mechanisms of sperm chemotaxis. Annu. Rev. Physiol. 2008, 70:93-117.
-
(2008)
Annu. Rev. Physiol.
, vol.70
, pp. 93-117
-
-
Kaupp, U.B.1
-
82
-
-
0032508032
-
Molecular identification of a hyperpolarization-activated channel in sea urchin sperm
-
Gauss R., et al. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 1998, 393:583-587.
-
(1998)
Nature
, vol.393
, pp. 583-587
-
-
Gauss, R.1
-
83
-
-
67651030760
-
Hyperpolarization-activated cation channels: from genes to function
-
Biel M., et al. Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 2009, 89:847-885.
-
(2009)
Physiol. Rev.
, vol.89
, pp. 847-885
-
-
Biel, M.1
-
84
-
-
34248190722
-
Cyclic nucleotide-gated channels in plants
-
Kaplan B., et al. Cyclic nucleotide-gated channels in plants. FEBS Lett. 2007, 581:2237-2246.
-
(2007)
FEBS Lett.
, vol.581
, pp. 2237-2246
-
-
Kaplan, B.1
-
86
-
-
70350514521
-
Absence of direct cyclic nucleotide modulation of mEAG1 and hERG1 channels revealed with fluorescence and electrophysiological methods
-
Brelidze T.I., et al. Absence of direct cyclic nucleotide modulation of mEAG1 and hERG1 channels revealed with fluorescence and electrophysiological methods. J. Biol. Chem. 2009, 284:27989-27997.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 27989-27997
-
-
Brelidze, T.I.1
-
87
-
-
1642554150
-
GAF domains: two-billion-year-old molecular switches that bind cyclic nucleotides
-
Martinez S.E., et al. GAF domains: two-billion-year-old molecular switches that bind cyclic nucleotides. Mol. Interv. 2002, 2:317-323.
-
(2002)
Mol. Interv.
, vol.2
, pp. 317-323
-
-
Martinez, S.E.1
-
88
-
-
0035853296
-
Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains
-
Anantharaman V., et al. Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J. Mol. Biol. 2001, 307:1271-1292.
-
(2001)
J. Mol. Biol.
, vol.307
, pp. 1271-1292
-
-
Anantharaman, V.1
-
89
-
-
70449143838
-
Interaction at end-plate receptors between different choline derivatives
-
DelCastillo, J. and Katz, B. (1957) Interaction at end-plate receptors between different choline derivatives. Proc. R. Soc. Lond B Biol. Sci. 146, 369-381.
-
(1957)
Proc. R. Soc. Lond B Biol. Sci.
, vol.146
, pp. 369-381
-
-
DelCastillo, J.1
Katz, B.2
-
90
-
-
0032199006
-
Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors
-
Colquhoun D. Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 1998, 125:924-947.
-
(1998)
Br. J. Pharmacol.
, vol.125
, pp. 924-947
-
-
Colquhoun, D.1
-
91
-
-
0030913948
-
Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules
-
Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 1997, 26:541-566.
-
(1997)
Annu. Rev. Biophys. Biomol. Struct.
, vol.26
, pp. 541-566
-
-
Schuck, P.1
|