-
1
-
-
0032266683
-
Efficient algorithms for geometric optimization
-
Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. Computing Surveys 30(4), 412-458 (1998)
-
(1998)
Computing Surveys
, vol.30
, Issue.4
, pp. 412-458
-
-
Agarwal, P.K.1
Sharir, M.2
-
2
-
-
0000982419
-
Applications of parametric searching in geometric optimization
-
Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algorithms 17(3), 292-318 (1994)
-
(1994)
J. Algorithms
, vol.17
, Issue.3
, pp. 292-318
-
-
Agarwal, P.K.1
Sharir, M.2
Toledo, S.3
-
4
-
-
84957054206
-
Matching polygonal curves with respect to the Fréchet distance
-
Ferreira, A., Reichel, H. (eds.) STACS 2001. Springer, Heidelberg
-
Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the Fréchet distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63-74. Springer, Heidelberg (2001)
-
(2001)
LNCS
, vol.2010
, pp. 63-74
-
-
Alt, H.1
Knauer, C.2
Wenk, C.3
-
5
-
-
21144453588
-
Comparison of distance measures for planar curves
-
DOI 10.1007/s00453-003-1042-5
-
Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45-58 (2003) (Pubitemid 40877160)
-
(2003)
Algorithmica (New York)
, vol.38
, Issue.1
, pp. 45-58
-
-
Alt, H.1
Knauer, C.2
Wenk, C.3
-
6
-
-
33750699629
-
Fréchet distance for curves, revisited
-
Azar, Y., Erlebach, T. (eds.) ESA 2006. Springer, Heidelberg
-
Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for curves, revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 52-63. Springer, Heidelberg (2006)
-
(2006)
LNCS
, vol.4168
, pp. 52-63
-
-
Aronov, B.1
Har-Peled, S.2
Knauer, C.3
Wang, Y.4
Wenk, C.5
-
7
-
-
0026976788
-
A class of convex programs with applications to computational geometry
-
ACM, New York
-
Dyer, M.E.: A class of convex programs with applications to computational geometry. In: Proc. 8th Symposium on Computational Geometry, pp. 9-15. ACM, New York (1992)
-
(1992)
Proc. 8th Symposium on Computational Geometry
, pp. 9-15
-
-
Dyer, M.E.1
-
9
-
-
33750795715
-
-
Tech. Rep. CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria
-
Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Tech. Rep. CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)
-
(1994)
Computing Discrete Fréchet Distance
-
-
Eiter, T.1
Mannila, H.2
-
10
-
-
0021370458
-
Generalized selection and ranking: Sorted matrices
-
Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: Sorted matrices. SIAM Journal on Computing 13(1), 14-30 (1984)
-
(1984)
SIAM Journal on Computing
, vol.13
, Issue.1
, pp. 14-30
-
-
Frederickson, G.N.1
Johnson, D.B.2
-
12
-
-
75649097834
-
The directed Hausdorff distance between imprecise point sets
-
ISAAC. Springer, Heidelberg
-
Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. In: ISAAC. LNCS, vol. 5878, pp. 720-729. Springer, Heidelberg (2009)
-
(2009)
LNCS
, vol.5878
, pp. 720-729
-
-
Knauer, C.1
Löffler, M.2
Scherfenberg, M.3
Wolle, T.4
-
13
-
-
33746433090
-
Largest and smallest tours and convex hulls for imprecise points
-
Arge, L., Freivalds, R. (eds.) SWAT 2006. Springer, Heidelberg
-
Löffler, M., van Kreveld, M.J.: Largest and smallest tours and convex hulls for imprecise points. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 375-387. Springer, Heidelberg (2006)
-
(2006)
LNCS
, vol.4059
, pp. 375-387
-
-
Löffler, M.1
Van Kreveld, M.J.2
-
14
-
-
84867958383
-
Delaunay triangulation of imprecise points in linear time after preprocessing
-
Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time after preprocessing. Computational Geometry: Theory and Applications 43(3), 234-242 (2010)
-
(2010)
Computational Geometry: Theory and Applications
, vol.43
, Issue.3
, pp. 234-242
-
-
Löffler, M.1
Snoeyink, J.2
-
16
-
-
34247468569
-
Computing the Fréchet distance between piecewise smooth curves
-
Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Computational Geometry: Theory and Applications 37(3), 162-174 (2007)
-
(2007)
Computational Geometry: Theory and Applications
, vol.37
, Issue.3
, pp. 162-174
-
-
Rote, G.1
|