-
3
-
-
0036644480
-
Deterministic convergence of an online gradient method for neural networks
-
Wu W., Xu Y.S. Deterministic convergence of an online gradient method for neural networks. Journal of Computational and Applied Mathematics 2002, 144:335-347.
-
(2002)
Journal of Computational and Applied Mathematics
, vol.144
, pp. 335-347
-
-
Wu, W.1
Xu, Y.S.2
-
4
-
-
0141849409
-
Training multilayer perceptrons via minimization of sum of ridge functions
-
Wu W., Feng G.R., Li X. Training multilayer perceptrons via minimization of sum of ridge functions. Advances in Computational Mathematics 2002, 17:331-347.
-
(2002)
Advances in Computational Mathematics
, vol.17
, pp. 331-347
-
-
Wu, W.1
Feng, G.R.2
Li, X.3
-
5
-
-
0036565025
-
Stability of steepest descent with momentum for quadratic functions
-
Torii M., Hagan M.T. Stability of steepest descent with momentum for quadratic functions. IEEE Transactions on Neural Networks 2002, 13(3):752-756.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.3
, pp. 752-756
-
-
Torii, M.1
Hagan, M.T.2
-
6
-
-
0346881152
-
Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method
-
Bhaya A., Kaszkurewicz E. Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method. Neural Networks 2004, 17:65-71.
-
(2004)
Neural Networks
, vol.17
, pp. 65-71
-
-
Bhaya, A.1
Kaszkurewicz, E.2
-
7
-
-
38049007529
-
Analysis of global convergence and learning parameters of the back-propagation algorithm for quadratic functions
-
Zeng Z.G. Analysis of global convergence and learning parameters of the back-propagation algorithm for quadratic functions. Lecture Notes in Computer Science 2007, vol. 4682:7-13.
-
(2007)
Lecture Notes in Computer Science
, vol.4682
, pp. 7-13
-
-
Zeng, Z.G.1
-
8
-
-
33644892170
-
Convergence of gradient method with momentum for two-layer feedforward neural networks
-
Zhang N.M., Wu W., Zheng G.F. Convergence of gradient method with momentum for two-layer feedforward neural networks. IEEE Transactions on Neural Networks 2006, 17(2):522-525.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.2
, pp. 522-525
-
-
Zhang, N.M.1
Wu, W.2
Zheng, G.F.3
-
9
-
-
33749539894
-
Deterministic convergence of an online gradient method with momentum
-
Zhang N.M. Deterministic convergence of an online gradient method with momentum. Lecture Notes in Computer Science 2007, vol. 4113:94-105.
-
(2007)
Lecture Notes in Computer Science
, vol.4113
, pp. 94-105
-
-
Zhang, N.M.1
-
10
-
-
67349220042
-
An online gradient method with momentum for two-layer feedforward neural networks
-
Zhang N.M. An online gradient method with momentum for two-layer feedforward neural networks. Applied Mathematics and Computation 2009, 212:488-498.
-
(2009)
Applied Mathematics and Computation
, vol.212
, pp. 488-498
-
-
Zhang, N.M.1
-
11
-
-
84898957627
-
For valid generalization, the size of the weights is more important than the size of the network
-
Bartlett P.L. For valid generalization, the size of the weights is more important than the size of the network. Advances in Neural Information Processing Systems 1997, 9:134-140.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 134-140
-
-
Bartlett, P.L.1
-
13
-
-
0024732792
-
Connectionist learning procedures
-
Hinton G.E. Connectionist learning procedures. Artificial Intelligence 1989, 40:185-234.
-
(1989)
Artificial Intelligence
, vol.40
, pp. 185-234
-
-
Hinton, G.E.1
-
15
-
-
0030633575
-
A penalty-function approach for pruning feedforward neural networks
-
Setiono R. A penalty-function approach for pruning feedforward neural networks. Neural Networks 1997, 9:185-204.
-
(1997)
Neural Networks
, vol.9
, pp. 185-204
-
-
Setiono, R.1
-
16
-
-
67649085858
-
Boundedness and convergence of online gradient method with penalty for linear output feedforward neural networks
-
Zhang H.S., Wu W. Boundedness and convergence of online gradient method with penalty for linear output feedforward neural networks. Neural Process Letters 2009, 29:205-212.
-
(2009)
Neural Process Letters
, vol.29
, pp. 205-212
-
-
Zhang, H.S.1
Wu, W.2
|