메뉴 건너뛰기




Volumn 38, Issue 4, 2011, Pages 3492-3498

Real-time anomaly detection systems for Denial-of-Service attacks by weighted k-nearest-neighbor classifiers

Author keywords

DoS attacks; Feature selection; Feature weighting; Genetic algorithm; KNN (k nearest neighbor) classification; Network security; NIDS (network intrusion detection system)

Indexed keywords

DOS ATTACKS; FEATURE SELECTION; FEATURE WEIGHTING; K-NEAREST NEIGHBORS; NETWORK INTRUSION DETECTION SYSTEMS;

EID: 78650707301     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.08.137     Document Type: Article
Times cited : (148)

References (17)
  • 2
    • 31544436627 scopus 로고    scopus 로고
    • Denial-of-service attack-detection techniques
    • G. Carl, G. Kesidis, R.R. Brooks, and S. Rai Denial-of-service attack-detection techniques IEEE Internet Computing January-February 2006 82 89
    • (2006) IEEE Internet Computing , Issue.JANUARY-FEBRUARY , pp. 82-89
    • Carl, G.1    Kesidis, G.2    Brooks, R.R.3    Rai, S.4
  • 3
    • 78650710494 scopus 로고    scopus 로고
    • DARPA Intrusion Detection Evaluation
    • DARPA Intrusion Detection Evaluation, .
  • 4
    • 16644393989 scopus 로고    scopus 로고
    • Real-time detection of distributed denial-of-service attacks using rbf networks and statistical features
    • D. Gavrilis, and E. Dermatas Real-time detection of distributed denial-of-service attacks using rbf networks and statistical features Computer Networks 48 2 2005 235 245
    • (2005) Computer Networks , vol.48 , Issue.2 , pp. 235-245
    • Gavrilis, D.1    Dermatas, E.2
  • 5
    • 10944257572 scopus 로고    scopus 로고
    • Feature selection for intrusion detection: An evolutionary wrapper approach
    • Hofman, A.; Horeis, T.; Sick, B. (2004). Feature selection for intrusion detection: an evolutionary wrapper approach. In Proceedings of the IEEE neural networks (Vol. 2, pp. 1563-1568).
    • (2004) Proceedings of the IEEE Neural Networks , vol.2 , pp. 1563-1568
    • Hofman, A.1    Horeis, T.2    Sick, B.3
  • 7
    • 78650697492 scopus 로고    scopus 로고
    • IP Traffic
    • IP Traffic. .
  • 8
    • 78650706342 scopus 로고    scopus 로고
    • KDD CUP, (1999a). Datasets .
    • (1999) Datasets
  • 10
    • 33646878980 scopus 로고    scopus 로고
    • Detecting distributed denial-of-service attacks using Kolmogorov complexity metrics
    • A. Kulkarni, and S. Bush Detecting distributed denial-of-service attacks using Kolmogorov complexity metrics Journal of Network and Systems Management 14 1 2006 69 80
    • (2006) Journal of Network and Systems Management , vol.14 , Issue.1 , pp. 69-80
    • Kulkarni, A.1    Bush, S.2
  • 12
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • Y. Liao, and V. Rao Vemuri Use of k-nearest neighbor classifier for intrusion detection Computers & Security 21 5 2002 439 448
    • (2002) Computers & Security , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Rao Vemuri, V.2
  • 13
    • 84870480277 scopus 로고    scopus 로고
    • Weighted feature extraction using a genetic algorithm for intrusion detection
    • Middlemiss, M. J.; Dick, G. (2003). Weighted feature extraction using a genetic algorithm for intrusion detection. In Proceedings of the evolutionary computation (Vol. 3, pp. 1669-1675).
    • (2003) Proceedings of the Evolutionary Computation , vol.3 , pp. 1669-1675
    • Middlemiss, M.J.1    Dick, G.2
  • 15
    • 77953759247 scopus 로고    scopus 로고
    • Decision tree classifier for network intrusion detection with GA-based feature selection
    • Stein, G.; Chen, B.; Wu, A. S.; Hua, K. A. (2005). Decision tree classifier for network intrusion detection with GA-based feature selection. In Proceedings of the ACM southeast regional conference (Vol. 2, pp. 136-141).
    • (2005) Proceedings of the ACM Southeast Regional Conference , vol.2 , pp. 136-141
    • Stein, G.1    Chen, B.2    Wu, A.S.3    Hua, K.A.4
  • 16
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • Sung, A. H.; Mukkamala, S. (2003) Identifying important features for intrusion detection using support vector machines and neural networks. In Proceedings of the IEEE symposium on applications and the Internet (pp. 209-216).
    • (2003) Proceedings of the IEEE Symposium on Applications and the Internet , pp. 209-216
    • Sung, A.H.1    Mukkamala, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.