-
1
-
-
52149083258
-
-
Technical report, Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Budapest, Hungary
-
Kovacs, F., Legany, C., Babos, A.: Cluster validity measurement techniques. Technical report, Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Budapest, Hungary (2002)
-
(2002)
Cluster Validity Measurement Techniques
-
-
Kovacs, F.1
Legany, C.2
Babos, A.3
-
2
-
-
7444230467
-
Automatic extraction of clusters from hierarchical clustering representations
-
Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. Springer, Heidelberg
-
Sander, J., Qin, X., Lu, Z., Niu, N., Kovarsky, A.: Automatic extraction of clusters from hierarchical clustering representations. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS (LNAI), vol. 2637, pp. 75-87. Springer, Heidelberg (2003)
-
(2003)
LNCS (LNAI)
, vol.2637
, pp. 75-87
-
-
Sander, J.1
Qin, X.2
Lu, Z.3
Niu, N.4
Kovarsky, A.5
-
4
-
-
84881222888
-
Interactive interpretation of hierarchical clustering
-
Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. Springer, Heidelberg
-
Boudaillier, E., Hébrail, G.: Interactive interpretation of hierarchical clustering. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 288-297. Springer, Heidelberg (1997)
-
(1997)
LNCS
, vol.1263
, pp. 288-297
-
-
Boudaillier, E.1
Hébrail, G.2
-
5
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
ACM, New York
-
Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: ACM SIGMOD International Conference on the Management of Data, pp. 49-60. ACM, New York (1999)
-
(1999)
ACM SIGMOD International Conference on the Management of Data
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.2
Kriegel, H.P.3
Sander, J.4
-
6
-
-
0037399775
-
Cluster validation techniques for genome expression data
-
Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal Processing 83, 825-833 (2003)
-
(2003)
Signal Processing
, vol.83
, pp. 825-833
-
-
Bolshakova, N.1
Azuaje, F.2
-
7
-
-
84941155240
-
Well separated clusters and optimal fuzzy partitions
-
Dunn, J.: Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 95-104 (1974)
-
(1974)
Journal of Cybernetics
, pp. 95-104
-
-
Dunn, J.1
-
8
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81-106 (1986)
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
11
-
-
76249105324
-
A new tool for the petroleum industry based on image analysis and hierarchical clustering
-
Springer, Heidelberg
-
Ferraretti, D., Gamberoni, G., Lamma, E., DiCuia, R., Turolla, C.: A new tool for the petroleum industry based on image analysis and hierarchical clustering. In: 10th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2009). Springer, Heidelberg (2009)
-
(2009)
10th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2009)
-
-
Ferraretti, D.1
Gamberoni, G.2
Lamma, E.3
DiCuia, R.4
Turolla, C.5
-
12
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
University of California Press
-
Macqueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Procedings of the Fifth Berkeley Symposium on Math, Statistics, and Probability, vol. 1, pp. 281-297. University of California Press (1967)
-
(1967)
Procedings of the Fifth Berkeley Symposium on Math, Statistics, and Probability
, vol.1
, pp. 281-297
-
-
Macqueen, J.B.1
|