메뉴 건너뛰기




Volumn 133, Issue 23, 2010, Pages

Study of the heating effect contribution to the nonlinear dielectric response of a supercooled liquid

Author keywords

[No Author keywords available]

Indexed keywords

DIELECTRIC MEASUREMENTS; ELECTRIC POWER; GLASS TRANSITION TEMPERATURE; GLASS-FORMING LIQUID; HEATING EFFECT; HIGH FREQUENCY; NONLINEAR DIELECTRIC RESPONSE; NONLINEAR SUSCEPTIBILITIES; RELAXATION FREQUENCY; SUPERCOOLED LIQUIDS; TEMPERATURE DEPENDENCE; TEMPERATURE MODULATION; THIRD HARMONIC;

EID: 78650687518     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3507252     Document Type: Article
Times cited : (11)

References (25)
  • 1
    • 0035826241 scopus 로고    scopus 로고
    • Supercooled liquids and the glass transition
    • DOI 10.1038/35065704
    • P. G. Debenedetti and F. H. Stilinger, Nature (London) 410, 259 (2001). 10.1038/35065704 (Pubitemid 32218700)
    • (2001) Nature , vol.410 , Issue.6825 , pp. 259-267
    • Debenedetti, P.G.1    Stillinger, F.H.2
  • 2
    • 0029992608 scopus 로고    scopus 로고
    • Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids
    • DOI 10.1126/science.274.5288.752
    • B. Schiener, R. Bhmer, A. Loidl, and R. V. Chamberlin, Science 274, 752 (1996). 10.1126/science.274.5288.752 (Pubitemid 26398248)
    • (1996) Science , vol.274 , Issue.5288 , pp. 752-754
    • Schiener, B.1    Bohmer, R.2    Loidl, A.3    Chamberlin, R.V.4
  • 4
    • 0002055106 scopus 로고    scopus 로고
    • 10.1146/annurev.physchem.51.1.99
    • M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000). 10.1146/annurev. physchem.51.1.99
    • (2000) Annu. Rev. Phys. Chem. , vol.51 , pp. 99
    • Ediger, M.D.1
  • 5
    • 0037124631 scopus 로고    scopus 로고
    • Heterogeneous dynamics in liquids: Fluctuations in space and time
    • DOI 10.1088/0953-8984/14/23/201, PII S0953898402267211
    • R. Richert, J. Phys.: Condens. Matter 14, R703 (2002). 10.1088/0953-8984/14/23/201 (Pubitemid 34715147)
    • (2002) Journal of Physics Condensed Matter , vol.14 , Issue.23
    • Richert, R.1
  • 6
    • 0000409765 scopus 로고
    • 10.1103/PhysRevE.52.1694
    • M. M. Hurley and P. Harowell, Phys. Rev. E 52, 1694 (1995). 10.1103/PhysRevE.52.1694
    • (1995) Phys. Rev. e , vol.52 , pp. 1694
    • Hurley, M.M.1    Harowell, P.2
  • 14
    • 57849153403 scopus 로고    scopus 로고
    • 10.1140/epjb/e2008-00416-2
    • W. Huang and R. Richert, Eur. Phys. J. B 66, 217 (2008). 10.1140/epjb/e2008-00416-2
    • (2008) Eur. Phys. J. B , vol.66 , pp. 217
    • Huang, W.1    Richert, R.2
  • 15
    • 33748356294 scopus 로고    scopus 로고
    • Nonlinear dielectric response and thermodynamic heterogeneity in liquids
    • DOI 10.1103/PhysRevLett.97.095703
    • R. Richert and S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006). 10.1103/PhysRevLett.97.095703 (Pubitemid 44335282)
    • (2006) Physical Review Letters , vol.97 , Issue.9 , pp. 095703
    • Richert, R.1    Weinstein, S.2
  • 16
    • 33846781157 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.75.064302
    • S. Weinstein and R. Richert, Phys. Rev. B 75, 064302 (2007). 10.1103/PhysRevB.75.064302
    • (2007) Phys. Rev. B , vol.75 , pp. 064302
    • Weinstein, S.1    Richert, R.2
  • 18
    • 78650693069 scopus 로고    scopus 로고
    • The Debye dynamics can be also obtained by starting with the noninertial Langevin equation for the rotational Brownian motion of a particule by appropriate transformation of the variables and direct averaging of the stochastic equation so obtained.
    • The Debye dynamics can be also obtained by starting with the noninertial Langevin equation for the rotational Brownian motion of a particule by appropriate transformation of the variables and direct averaging of the stochastic equation so obtained.
  • 19
    • 78650713283 scopus 로고    scopus 로고
    • 1, the latter quantity is taken as a constant when solving Eq.
    • 1, the latter quantity is taken as a constant when solving Eq.
  • 20
    • 35949018243 scopus 로고
    • 10.1103/PhysRevB.34.1631, Phys. Rev. Lett. 54, 1631 (1985). 10.1103/PhysRevB.54.1631
    • N. O. Birge, Phys. Rev. B 34, 2674 (1986); 10.1103/PhysRevB.34.1631 N. O. Birge and S. R. Nagel, Phys. Rev. Lett. 54, 1631 (1985). 10.1103/PhysRevB.54. 1631
    • (1986) Phys. Rev. B , vol.34 , pp. 2674
    • Birge, N.O.1    Birge, N.O.2    Nagel, S.R.3
  • 21
    • 78650689789 scopus 로고    scopus 로고
    • 2. Besides, we also neglect the possible thermal resistance associated to the interface glycerol/electrode: this is supported by the thorough study of who has showed, for the Glycerol/Macor interface, that such an effect was responsible of only 5 of the temperature increase, see Ref.
    • 2. Besides, we also neglect the possible thermal resistance associated to the interface glycerol/electrode: this is supported by the thorough study of Minakov who has showed, for the Glycerol/Macor interface, that such an effect was responsible of only 5 of the temperature increase, see Ref.
    • Minakov1
  • 23
    • 78650715232 scopus 로고    scopus 로고
    • note
    • 4≃0.985 in the present definition of TWhite star.
  • 25
    • 78650717612 scopus 로고    scopus 로고
    • 2, see Ref., but it is in general not valid for computing the dc temperature increase. The difference lies in the fact that, because of the skin effect, the temperature oscillations are efficiently damped in the thick electrodes, while the dc component is not damped at all. The dc heat flux is thus fully transmitted by the electrodes, and the unavoidable insulating piece between the electrode and the experimental cell is responsible for the major part of the dc temperature increase. The only way to get rid of the dc heating is to perform extremely fast experiments, in the spirit of what is made in the seminal Ref., so as to measure the sample properties in a time scale much lower than the thermal diffusion time between the sample and the experimental cell.
    • 2, see Ref., but it is in general not valid for computing the dc temperature increase. The difference lies in the fact that, because of the skin effect, the temperature oscillations are efficiently damped in the thick electrodes, while the dc component is not damped at all. The dc heat flux is thus fully transmitted by the electrodes, and the unavoidable insulating piece between the electrode and the experimental cell is responsible for the major part of the dc temperature increase. The only way to get rid of the dc heating is to perform extremely fast experiments, in the spirit of what is made in the seminal Ref., so as to measure the sample properties in a time scale much lower than the thermal diffusion time between the sample and the experimental cell.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.