메뉴 건너뛰기




Volumn 222, Issue 3, 2011, Pages 555-566

Combining state and transition models with dynamic Bayesian networks

Author keywords

Bayesian networks; Dynamic Bayesian networks; Rangeland management; State and transition models; System dynamics

Indexed keywords

COMPLEXITY ANALYSIS; DECISION SUPPORT TOOLS; DYNAMIC BAYESIAN NETWORK; DYNAMIC BAYESIAN NETWORKS; ECOLOGICAL MODELLING; EXPLICIT REPRESENTATION; NEW MODEL; RANGELAND MANAGEMENT; STATE-AND-TRANSITION MODELS; SYSTEM DYNAMICS; TIME FRAME;

EID: 78650678292     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2010.10.010     Document Type: Article
Times cited : (30)

References (32)
  • 1
    • 56549130935 scopus 로고    scopus 로고
    • Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks
    • Bashari H., Smith C., Bosch O. Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks. Agricultural Systems 2009, 99:23-34.
    • (2009) Agricultural Systems , vol.99 , pp. 23-34
    • Bashari, H.1    Smith, C.2    Bosch, O.3
  • 3
    • 1542548177 scopus 로고    scopus 로고
    • A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis
    • Borsuk M., Stow C., Reckhow K. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling 2004, 173:219-239.
    • (2004) Ecological Modelling , vol.173 , pp. 219-239
    • Borsuk, M.1    Stow, C.2    Reckhow, K.3
  • 5
    • 78650678990 scopus 로고    scopus 로고
    • Planning improvements in natural resources management: guidelines for using Bayesian networks to support the planning and management of development programmes in the water sector and beyond. Technical Report. Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxon, UK.
    • Cain, J., 2001. Planning improvements in natural resources management: guidelines for using Bayesian networks to support the planning and management of development programmes in the water sector and beyond. Technical Report. Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxon, UK.
    • (2001)
    • Cain, J.1
  • 9
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • Dean T., Kanazawa K. A model for reasoning about persistence and causation. Computational Intelligence 1989, 5:142-150.
    • (1989) Computational Intelligence , vol.5 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 12
    • 0000086731 scopus 로고
    • Influence diagrams
    • Strategic Decisions Group, Menlo Park, CA, R. Howard, J. Matheson (Eds.)
    • Howard R., Matheson J. Influence diagrams. Readings in Decision Analysis 1981, 763-771. Strategic Decisions Group, Menlo Park, CA. R. Howard, J. Matheson (Eds.).
    • (1981) Readings in Decision Analysis , pp. 763-771
    • Howard, R.1    Matheson, J.2
  • 14
    • 78650678216 scopus 로고
    • Probability, time, and action. Ph.D. Thesis. Brown University, Providence, RI.
    • Kanazawa, K., 1992. Probability, time, and action. Ph.D. Thesis. Brown University, Providence, RI.
    • (1992)
    • Kanazawa, K.1
  • 18
    • 78650679755 scopus 로고    scopus 로고
    • The "Native Fish" Bayesian networks. Technical Report. 2010/3, Bayesian Intelligence.
    • Nicholson, A., Woodberry, O., 2010. The "Native Fish" Bayesian networks. Technical Report. 2010/3, Bayesian Intelligence. http://www.bayesian-intelligence.com/publications.php.
    • (2010)
    • Nicholson, A.1    Woodberry, O.2
  • 19
    • 78650676741 scopus 로고
    • Monitoring discrete environments using dynamic belief networks. Ph.D. Thesis. Department of Engineering Sciences, Oxford.
    • Nicholson, A.E., 1992. Monitoring discrete environments using dynamic belief networks. Ph.D. Thesis. Department of Engineering Sciences, Oxford.
    • (1992)
    • Nicholson, A.E.1
  • 22
    • 78650678448 scopus 로고
    • Norsys
    • Norsys Netica 1994-2010, http://www.norsys.com/.
    • (1994) Netica
  • 24
    • 63549114120 scopus 로고    scopus 로고
    • Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach
    • Renken H., Mumby P.J. Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach. Ecological Modelling 2009, 220:1305-1314.
    • (2009) Ecological Modelling , vol.220 , pp. 1305-1314
    • Renken, H.1    Mumby, P.J.2
  • 25
    • 78650679928 scopus 로고    scopus 로고
    • in press. State-and-transition modelling for adaptive management of native woodlands. Biological Conservation.
    • Rumpff, L., Duncan, D., Vesk, P., Keith, D., Wintle, B., in press. State-and-transition modelling for adaptive management of native woodlands. Biological Conservation.
    • Rumpff, L.1    Duncan, D.2    Vesk, P.3    Keith, D.4    Wintle, B.5
  • 26
    • 0030161977 scopus 로고    scopus 로고
    • State-transition modelling of classical swine fever to evaluate national identification and recording systems-general aspects and model description
    • Saatkamp H.W., Huirne R.B.M., Geers R., Dijkhuizen A.A., Noordhuizen J.P.T.M., Goedseels V. State-transition modelling of classical swine fever to evaluate national identification and recording systems-general aspects and model description. Agricultural Systems 1996, 51:215-236.
    • (1996) Agricultural Systems , vol.51 , pp. 215-236
    • Saatkamp, H.W.1    Huirne, R.B.M.2    Geers, R.3    Dijkhuizen, A.A.4    Noordhuizen, J.P.T.M.5    Goedseels, V.6
  • 27
    • 72049109929 scopus 로고    scopus 로고
    • Deriving state-and-transition models from an image series of grassland pattern dynamics
    • Sadler R.J., Hazelton M., Boer M.M., Grierson P.F. Deriving state-and-transition models from an image series of grassland pattern dynamics. Ecological Modelling 2010, 221:433-444.
    • (2010) Ecological Modelling , vol.221 , pp. 433-444
    • Sadler, R.J.1    Hazelton, M.2    Boer, M.M.3    Grierson, P.F.4
  • 28
    • 42949151300 scopus 로고    scopus 로고
    • Dynamic modeling of groundwater pollutants with Bayesian networks
    • Shihab K. Dynamic modeling of groundwater pollutants with Bayesian networks. Applied Artificial Intelligence 2008, 22:352-376.
    • (2008) Applied Artificial Intelligence , vol.22 , pp. 352-376
    • Shihab, K.1
  • 31
    • 34047185270 scopus 로고    scopus 로고
    • Advantages and challenges of Bayesian networks in environmental modelling
    • Uusitalo L. Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling 2007, 203:312-318.
    • (2007) Ecological Modelling , vol.203 , pp. 312-318
    • Uusitalo, L.1
  • 32
    • 0033565273 scopus 로고    scopus 로고
    • Learning Bayesian decision analysis by doing: lessons from environmental and natural resources management
    • Varis O., Kuikka S. Learning Bayesian decision analysis by doing: lessons from environmental and natural resources management. Ecological Modelling 1999, 119:177-195. (19).
    • (1999) Ecological Modelling , vol.119 , Issue.19 , pp. 177-195
    • Varis, O.1    Kuikka, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.