메뉴 건너뛰기




Volumn 21, Issue 7-8, 2010, Pages 817-833

Space-time regression modeling of tree growth using the skew-t distribution

Author keywords

Juvenile tree growth; Markov random field; Process convolution; Skew t distribution; Spatially correlated random effects

Indexed keywords

BAYESIAN ANALYSIS; CONIFEROUS TREE; FOREST ECOSYSTEM; GAUSSIAN METHOD; GROWTH CURVE; MARKOV CHAIN; MULTIVARIATE ANALYSIS; PLANTATION; REGRESSION ANALYSIS; SKEWNESS;

EID: 78650654685     PISSN: 11804009     EISSN: 1099095X     Source Type: Journal    
DOI: 10.1002/env.1057     Document Type: Article
Times cited : (5)

References (25)
  • 2
    • 0037900005 scopus 로고    scopus 로고
    • Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution
    • Azzalini A, Capitanio A. 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution. Journal of the Royal Statistical Society, Series B 65: 367-389.
    • (2003) Journal of the Royal Statistical Society, Series B , vol.65 , pp. 367-389
    • Azzalini, A.1    Capitanio, A.2
  • 3
    • 4444378590 scopus 로고    scopus 로고
    • Hierarchical Modeling and Analysis for Spatial Data
    • Chapman & Hall/CRC: Boca Raton, FL.
    • Banerjee S, Carlin BP, Gelfand AE. 2004. Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC: Boca Raton, FL.
    • (2004)
    • Banerjee, S.1    Carlin, B.P.2    Gelfand, A.E.3
  • 4
    • 33847402134 scopus 로고    scopus 로고
    • Coregionalized single- and multi-resolution spatially-varying growth curve modelling with application to weed growth
    • Banerjee S, Johnson GA. 2006. Coregionalized single- and multi-resolution spatially-varying growth curve modelling with application to weed growth. Biometrics 61: 617-625.
    • (2006) Biometrics , vol.61 , pp. 617-625
    • Banerjee, S.1    Johnson, G.A.2
  • 6
    • 34548023081 scopus 로고    scopus 로고
    • Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment
    • Calder CA. 2007. Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment. Environmental and Ecological Statistics 14: 229-247.
    • (2007) Environmental and Ecological Statistics , vol.14 , pp. 229-247
    • Calder, C.A.1
  • 8
    • 0003597030 scopus 로고    scopus 로고
    • Analysis of Longitudinal Data
    • 2nd edn., Oxford University Press: Oxford, UK.
    • Diggle PJ, Heagerty PJ, Liang KY, Zeger SL. 2002. Analysis of Longitudinal Data, 2nd edn. Oxford University Press: Oxford, UK.
    • (2002)
    • Diggle, P.J.1    Heagerty, P.J.2    Liang, K.Y.3    Zeger, S.L.4
  • 11
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: a minimum posterior predictive loss approach
    • Gelfand AE, Ghosh SK. 1998. Model choice: a minimum posterior predictive loss approach. Biometrika 85: 1-11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 12
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman A. 2006. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1: 515-533.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 13
    • 85057697038 scopus 로고    scopus 로고
    • Skew-elliptical Distributions and Their Applications: A Journey Beyond Normality
    • Chapman and Hall: Florida, USA.
    • Genton MG. 2004. Skew-elliptical Distributions and Their Applications: A Journey Beyond Normality. Chapman and Hall: Florida, USA.
    • (2004)
    • Genton, M.G.1
  • 14
    • 0030980644 scopus 로고    scopus 로고
    • Large hierarchical bayesian analysis of multivariate survival data
    • Gustafson P. 1997. Large hierarchical bayesian analysis of multivariate survival data. Biometrics 53: 230-242.
    • (1997) Biometrics , vol.53 , pp. 230-242
    • Gustafson, P.1
  • 15
    • 0032422974 scopus 로고    scopus 로고
    • A process-convolution approach to modeling temperatures in the North Atlantic Ocean
    • Higdon D. 1998. A process-convolution approach to modeling temperatures in the North Atlantic Ocean. Journal of Ecological and Environmental Statistics 5: 173-190.
    • (1998) Journal of Ecological and Environmental Statistics , vol.5 , pp. 173-190
    • Higdon, D.1
  • 16
    • 2942619617 scopus 로고    scopus 로고
    • Quantitative Methods for Current Environmental Issues
    • Anderson C, Barnett V, Chatwin PC, El-Shaarawi AH (eds)., Springer-Verlag: London;
    • Higdon D. 2002. Space and space-time modeling using process convolutions. In Quantitative Methods for Current Environmental Issues, Anderson C, Barnett V, Chatwin PC, El-Shaarawi AH (eds). Springer-Verlag: London; 37-56.
    • (2002) Space and space-time modeling using process convolutions , pp. 37-56
    • Higdon, D.1
  • 17
    • 77049115418 scopus 로고    scopus 로고
    • Space-time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection
    • Hossain MM, Lawson AB. 2010. Space-time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection. Environmental and Ecological Statistics. 17: 73-95.
    • (2010) Environmental and Ecological Statistics. , vol.17 , pp. 73-95
    • Hossain, M.M.1    Lawson, A.B.2
  • 18
    • 46549086432 scopus 로고    scopus 로고
    • Linear effects mixed models with skew-elliptical distributions: a Bayesian approach
    • Jara A, Quintana FA, Martn ES. 2008. Linear effects mixed models with skew-elliptical distributions: a Bayesian approach. Computational Statistics and Data Analysis 52: 5033-5045.
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 5033-5045
    • Jara, A.1    Quintana, F.A.2    Martn, E.S.3
  • 19
    • 0007192910 scopus 로고    scopus 로고
    • Bayesian process-convolution approaches to specifying spatial dependence structure
    • Ph.D. Thesis Duke University: Durham, NC;
    • Kern J. 2000. Bayesian process-convolution approaches to specifying spatial dependence structure, Ph.D. Thesis Duke University: Durham, NC; 27708.
    • (2000) , pp. 27708
    • Kern, J.1
  • 22
    • 77952975344 scopus 로고    scopus 로고
    • Joint spatial modeling of recurrent infection and growth with processes under intermittent observation
    • Nathoo FS. 2010. Joint spatial modeling of recurrent infection and growth with processes under intermittent observation. Biometrics. 66: 336-346.
    • (2010) Biometrics. , vol.66 , pp. 336-346
    • Nathoo, F.S.1
  • 23
    • 38349069828 scopus 로고    scopus 로고
    • Stationary process approximation for the analysis of large spatial datasets
    • Technical Report, Institute of Statistics and Decision Science: Duke University.
    • Xia G, Gelfand AE. 2005. Stationary process approximation for the analysis of large spatial datasets. Technical Report, Institute of Statistics and Decision Science: Duke University.
    • (2005)
    • Xia, G.1    Gelfand, A.E.2
  • 24
    • 0011875126 scopus 로고    scopus 로고
    • Parametric modelling of growth curve data: an overview (with discussion)
    • Zimmerman D, Núñez-Antón V. 2001. Parametric modelling of growth curve data: an overview (with discussion). Test 10: 1-73.
    • (2001) Test , vol.10 , pp. 1-73
    • Zimmerman, D.1    Núñez-Antón, V.2
  • 25
    • 38349170653 scopus 로고    scopus 로고
    • Statistical inference for atmospheric transport models using process convolutions
    • Zhou W, Sansó B. 2007. Statistical inference for atmospheric transport models using process convolutions. Environmetrics 19: 87-101.
    • (2007) Environmetrics , vol.19 , pp. 87-101
    • Zhou, W.1    Sansó, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.