메뉴 건너뛰기




Volumn 81, Issue 2, 2011, Pages 716-724

Hopfield-K-Means clustering algorithm: A proposal for the segmentation of electricity customers

Author keywords

Customer characterization; Electricity markets; Neural networks

Indexed keywords

CHARACTERIZATION TECHNIQUES; CUSTOMER CHARACTERIZATION; CUSTOMER CLASSIFICATION; CUSTOMER SEGMENTATION; ELECTRICITY CUSTOMERS; ELECTRICITY MARKETS; HIER-ARCHICAL CLUSTERING; HIERARCHICAL ALGORITHM; INITIAL SOLUTION; K-MEANS; K-MEANS ALGORITHM; K-MEANS CLUSTERING ALGORITHM; K-MEANS METHOD; LOCAL MINIMUMS; MODIFIED FOLLOW THE LEADERS; NUMBER OF CLUSTERS; SEGMENTATION METHODS;

EID: 78650599481     PISSN: 03787796     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.epsr.2010.10.036     Document Type: Article
Times cited : (82)

References (22)
  • 2
    • 33646366398 scopus 로고    scopus 로고
    • Comparisons among clustering techniques for electricity customer classification
    • G. Chicco, R. Napoli, and F. Piglione Comparisons among clustering techniques for electricity customer classification IEEE Trans. Power Syst. 21 2006 933 940
    • (2006) IEEE Trans. Power Syst. , vol.21 , pp. 933-940
    • Chicco, G.1    Napoli, R.2    Piglione, F.3
  • 6
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • R. Xu, and D. Wunsch Survey of clustering algorithms IEEE Trans. Neural Netw. 16 2005 645 678
    • (2005) IEEE Trans. Neural Netw. , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 7
    • 33847652936 scopus 로고    scopus 로고
    • Classification, filtering and identification of electrical customer load patterns through the use of Self-Organizing Maps
    • S. Valero, M. Ortiz, S. Senabre, A. Gabaldón, and F. García Classification, filtering and identification of electrical customer load patterns through the use of Self-Organizing Maps IEEE Trans. Power Syst. 21 2006 1672 1682
    • (2006) IEEE Trans. Power Syst. , vol.21 , pp. 1672-1682
    • Valero, S.1    Ortiz, M.2    Senabre, S.3    Gabaldón, A.4    García, F.5
  • 11
    • 34548048165 scopus 로고    scopus 로고
    • Two-stage pattern recognition of load curves for classification of electricity customers
    • G.J. Tsekouras, N.D. Hatziargyriou, and E.N. Dialynas Two-stage pattern recognition of load curves for classification of electricity customers IEEE Trans. Power Syst. 22 2007 1120 1128
    • (2007) IEEE Trans. Power Syst. , vol.22 , pp. 1120-1128
    • Tsekouras, G.J.1    Hatziargyriou, N.D.2    Dialynas, E.N.3
  • 13
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • S. Mallat A theory for multiresolution signal decomposition: the wavelet representation IEEE Trans. Pattern Anal. Mach. Intell. 11 1989 674 693
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.1
  • 14
    • 0020118274 scopus 로고
    • Neural network and physical systems with emergent collective computational abilities
    • J.J. Hopfield Neural network and physical systems with emergent collective computational abilities Proc. Natl. Acad. Sci. 79 1982 2554 2558
    • (1982) Proc. Natl. Acad. Sci. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 15
    • 0021835689 scopus 로고
    • Neuronal computation of decisions in optimization problems
    • J.J. Hopfield, and D. Tank Neuronal computation of decisions in optimization problems Biol. Cybernet. 52 1985 769 773
    • (1985) Biol. Cybernet. , vol.52 , pp. 769-773
    • Hopfield, J.J.1    Tank, D.2
  • 16
    • 0025483481 scopus 로고
    • Parallel algorithms for finding a near-maximum independent set of a circle graph
    • Y. Takefuji, and L. Chend Parallel algorithms for finding a near-maximum independent set of a circle graph IEEE Trans. Neural Netw. 1 1990 263 267
    • (1990) IEEE Trans. Neural Netw. , vol.1 , pp. 263-267
    • Takefuji, Y.1    Chend, L.2
  • 17
    • 0344194652 scopus 로고
    • An artificial maximum neural network: A winner-take-all neuron forcing the state of the system in a solution domain
    • Y. Takefuji, K. Lee, and H. Aiso An artificial maximum neural network: a winner-take-all neuron forcing the state of the system in a solution domain Biol. Cybernet. 67 1992 243 2513
    • (1992) Biol. Cybernet. , vol.67 , pp. 243-2513
    • Takefuji, Y.1    Lee, K.2    Aiso, H.3
  • 18
    • 77958024364 scopus 로고    scopus 로고
    • Application of clustering algorithms and self organizing maps to classify electricity customers
    • G. Chicco, R. Napoli, and F. Piglione Application of clustering algorithms and self organizing maps to classify electricity customers Proc. IEEE Power Tech. 2003 23 26
    • (2003) Proc. IEEE Power Tech. , pp. 23-26
    • Chicco, G.1    Napoli, R.2    Piglione, F.3
  • 20
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • R. Calinski, and J. Harabasz A dendrite method for cluster analysis Commun. Stat. 3 1974 1 27
    • (1974) Commun. Stat. , vol.3 , pp. 1-27
    • Calinski, R.1    Harabasz, J.2
  • 22
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. Milligan, and M. Cooper An examination of procedures for determining the number of clusters in a data set Psychometrika 50 1985 159 179
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.1    Cooper, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.