메뉴 건너뛰기




Volumn 12, Issue 2, 2011, Pages 111-130

An empirical study of binary classifier fusion methods for multiclass classification

Author keywords

Class binarization; Classification; Multiclass problems; Output coding

Indexed keywords

BASE LEARNERS; BINARIZATIONS; BINARY CLASSIFIERS; CLASSIFICATION; CODING STRATEGY; EMPIRICAL STUDIES; ENSEMBLES OF CLASSIFIERS; FUSION PROCESS; INDIVIDUAL CLASSIFIERS; MULTI-CLASS CLASSIFICATION; MULTI-CLASS CLASSIFIER; MULTI-CLASS PROBLEMS; MULTICLASS CLASSIFICATION PROBLEMS; MULTICLASSIFIER SYSTEM; NEW RESULTS; OUTPUT CODING; REAL-WORLD PROBLEM; TESTING ERRORS; UCI MACHINE LEARNING REPOSITORY;

EID: 78650572282     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2010.06.010     Document Type: Article
Times cited : (79)

References (54)
  • 2
    • 58649110205 scopus 로고    scopus 로고
    • Overfitting cautious selection of classifiers ensembles with genetic algorithms
    • E.M. Dos Santos, R. Sabourin, and P. Maupin Overfitting cautious selection of classifiers ensembles with genetic algorithms Information Fusion 10 2009 150 162
    • (2009) Information Fusion , vol.10 , pp. 150-162
    • Dos Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 3
    • 0001652061 scopus 로고    scopus 로고
    • Binary labelling and decision-level fusion
    • T. Windeatt, and R. Ghaderi Binary labelling and decision-level fusion Information Fusion 2 2001 103 112
    • (2001) Information Fusion , vol.2 , pp. 103-112
    • Windeatt, T.1    Ghaderi, R.2
  • 4
    • 10444224738 scopus 로고    scopus 로고
    • Diversity measures for multiple classifier system analysis and design
    • T. Windeatt Diversity measures for multiple classifier system analysis and design Information Fusion 6 2005 21 36
    • (2005) Information Fusion , vol.6 , pp. 21-36
    • Windeatt, T.1
  • 5
    • 13444273324 scopus 로고    scopus 로고
    • A cluster ensemble method for clustering categorical data
    • Z. He, X. Xu, and S. Deng A cluster ensemble method for clustering categorical data Information Fusion 6 2005 143 151
    • (2005) Information Fusion , vol.6 , pp. 143-151
    • He, Z.1    Xu, X.2    Deng, S.3
  • 9
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie, and R. Tibshirani Classification by pairwise coupling The Annals of Statistics 26 2 1998 451 471
    • (1998) The Annals of Statistics , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 11
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • T.-F. Wu, C.-J. Lin, and R.C. Weng Probability estimates for multi-class classification by pairwise coupling Journal of Machine Learning Research 5 2004 975 1005
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 14
    • 0037368938 scopus 로고    scopus 로고
    • Coding and decoding strategies for multi-class learning problems
    • T. Windeatt, and R. Ghaderi Coding and decoding strategies for multi-class learning problems Information Fusion 4 2003 11 21
    • (2003) Information Fusion , vol.4 , pp. 11-21
    • Windeatt, T.1    Ghaderi, R.2
  • 15
    • 33645983801 scopus 로고
    • Why error-correcting output coding works with decision trees
    • Department of Computer Science, Oregon State University, Corvallis, OR
    • E.B. Kong, T.G. Dietterich, Why error-correcting output coding works with decision trees, Technical Report, Department of Computer Science, Oregon State University, Corvallis, OR, 1995.
    • (1995) Technical Report
    • Kong, E.B.1    Dietterich, T.G.2
  • 17
    • 84957087567 scopus 로고    scopus 로고
    • Improved pairwise coupling classification with correcting classifiers
    • Lecture Notes in Computer Science, Springer, Chemnitz, Germany doi:10.1007/BFb0026686
    • M. Moreira, E. Mayoraz, Improved pairwise coupling classification with correcting classifiers, in: Proceedings of the 10th European Conference on Machine Learning, vol. 1398, Lecture Notes in Computer Science, Springer, Chemnitz, Germany, 1998, pp. 160-171, doi:10.1007/BFb0026686.
    • (1998) Proceedings of the 10th European Conference on Machine Learning , vol.1398 , pp. 160-171
    • Moreira, M.1    Mayoraz, E.2
  • 21
    • 0001648184 scopus 로고
    • Error-correcting output coding corrects bias and variance
    • A. Prieditis, J.F. Lemmer (Eds.) Elsevier Science Publishers
    • E.B. Kong, T.G. Dietterich, Error-correcting output coding corrects bias and variance, in: A. Prieditis, J.F. Lemmer (Eds.), Machine Learning: Proceedings of the Twelfth International Conference, Elsevier Science Publishers, 1995, pp. 275-283.
    • (1995) Machine Learning: Proceedings of the Twelfth International Conference , pp. 275-283
    • Kong, E.B.1    Dietterich, T.G.2
  • 22
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.-W. Hsu, and C.-J. Lin A comparison of methods for multiclass support vector machines TNN 13 2 2002 415 425
    • (2002) TNN , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 24
    • 0242613950 scopus 로고    scopus 로고
    • Improving multiclass text classification with the support vector machine
    • J.D.M. Rennie, R. Rifkin, Improving multiclass text classification with the support vector machine, Technical Report 2001-026, MIT, 2001.
    • (2001) Technical Report 2001-026, MIT
    • Rennie, J.D.M.1    Rifkin, R.2
  • 25
    • 84867071286 scopus 로고    scopus 로고
    • Effectiveness of error correcting output codes in multiclass learning problems
    • J. Kittler, F. Roli (Eds.) Springer, Cagliary, Italy
    • F. Masulli, G. Valentini, Effectiveness of error correcting output codes in multiclass learning problems, in: J. Kittler, F. Roli (Eds.), Multiple Classifier Systems, MCS2000, Lecture Notes in Computer Science, Springer, Cagliary, Italy, 2000, pp. 107-116.
    • (2000) Multiple Classifier Systems, MCS2000, Lecture Notes in Computer Science , pp. 107-116
    • Masulli, F.1    Valentini, G.2
  • 26
    • 1642313738 scopus 로고    scopus 로고
    • Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines
    • F. Masulli, and G. Valentini Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines Patterns Analysis and Applications 6 2003 285 300
    • (2003) Patterns Analysis and Applications , vol.6 , pp. 285-300
    • Masulli, F.1    Valentini, G.2
  • 27
    • 0000040021 scopus 로고    scopus 로고
    • Using output codes to boost multiclass learning problems
    • D.H. Fisher (Ed.) Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • R.E. Shapire, Using output codes to boost multiclass learning problems, in: D.H. Fisher (Ed.), Proceedings of the 14th International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997, pp. 313-321.
    • (1997) Proceedings of the 14th International Conference on Machine Learning , pp. 313-321
    • Shapire, R.E.1
  • 29
    • 33645963453 scopus 로고    scopus 로고
    • Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes
    • O. Pujol, P. Radeva, and J. Vitriá Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes IEEE Transactions on Pattern Analysis and Machine Intelligence 28 6 2006 1007 1012
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.6 , pp. 1007-1012
    • Pujol, O.1    Radeva, P.2    Vitriá, J.3
  • 30
    • 34948906283 scopus 로고    scopus 로고
    • An incremental node embedding technique for error correcting output codes
    • 101016/jpatcog200704008
    • O. Pujol, S. Escalera, and P. Radeva An incremental node embedding technique for error correcting output codes Pattern Recognition 41 2008 713 725 10.1016/j.patcog.2007.04.008
    • (2008) Pattern Recognition , vol.41 , pp. 713-725
    • Pujol, O.1    Escalera, S.2    Radeva, P.3
  • 33
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Computation 10 7 1998 1895 1923
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 34
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biometrics 1 1945 80 83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 35
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 36
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman A comparison of alternative tests of significance for the problem of m rankings Annals of Mathematicals Statistics 11 1940 86 92
    • (1940) Annals of Mathematicals Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 37
    • 0001750957 scopus 로고
    • Approximations of the critical regions of the Friedman statistic
    • R.L. Iman, and J.M. Davenport Approximations of the critical regions of the Friedman statistic Communications in Statistics 6 1980 571 595
    • (1980) Communications in Statistics , vol.6 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 39
  • 41
  • 42
    • 9644281038 scopus 로고    scopus 로고
    • Using diversity measures for generating error-correcting output codes
    • L.I. Kuncheva Using diversity measures for generating error-correcting output codes Pattern Recognition Letters 26 2005 83 90
    • (2005) Pattern Recognition Letters , vol.26 , pp. 83-90
    • Kuncheva, L.I.1
  • 47
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2cv F test for comparing supervised classification learning algorithms
    • E. Alpaydin Combined 5 × 2cv F test for comparing supervised classification learning algorithms Neural Computation 11 1999 1885 1892
    • (1999) Neural Computation , vol.11 , pp. 1885-1892
    • Alpaydin, E.1
  • 50
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva, and C.J. Whitaker Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy Machine Learning 51 2 2003 181 207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.J.2
  • 51
    • 0034877853 scopus 로고    scopus 로고
    • Quantitative evaluation of dependence among outputs in ECOC classifiers using mutual information based measures
    • K. Marko, P. Werbos (Eds.) IEEE, Piscataway, NJ, USA
    • F. Masulli, G. Valentini, Quantitative evaluation of dependence among outputs in ECOC classifiers using mutual information based measures, in: K. Marko, P. Werbos (Eds.), Proceedings of the International Joint Conference on Neural Networks IJCNN'01, vol. 2, IEEE, Piscataway, NJ, USA, 2001, pp. 784-789.
    • (2001) Proceedings of the International Joint Conference on Neural Networks IJCNN'01 , vol.2 , pp. 784-789
    • Masulli, F.1    Valentini, G.2
  • 54
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Machine Learning 40 2000 139 157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.