-
1
-
-
34548827574
-
XETAL-II: A 107 GOPS, 600 mW massively-parallel processor for video scene analysis
-
February
-
A. Abbo, et al., XETAL-II: a 107 GOPS, 600 mW massively-parallel processor for video scene analysis, IEEE ISSCC Dig. Tech. Pap. (February 2007) 270-271.
-
(2007)
IEEE ISSCC Dig. Tech. Pap.
, pp. 270-271
-
-
Abbo, A.1
-
2
-
-
51949098692
-
A 100 GOPS in-vehicle vision processor for pre-crash safety systems based on ring connected 128 4-way VLIW processing elements
-
Shorin Kyo, et al., A 100 GOPS in-vehicle vision processor for pre-crash safety systems based on ring connected 128 4-way VLIW processing elements, IEEE Symp. VLSI Circuits (2008) 28-29.
-
(2008)
IEEE Symp. VLSI Circuits
, pp. 28-29
-
-
Kyo, S.1
-
3
-
-
84938594928
-
An 81.6 GOPS object recognition processor based on NoC and visual image processing memory
-
D. Kim, et al., An 81.6 GOPS object recognition processor based on NoC and visual image processing memory, IEEE CICC (2007) 443-446.
-
(2007)
IEEE CICC
, pp. 443-446
-
-
Kim, D.1
-
4
-
-
49549105341
-
A 125GOPS 583 mW network-on-chip based parallel processor with bio-inspired visual attention engine
-
K. Kim, et al., A 125GOPS 583 mW network-on-chip based parallel processor with bio-inspired visual attention engine, Dig. Tech. Pap. IEEE ISSCC (2008) 308-309.
-
(2008)
Dig. Tech. Pap. IEEE ISSCC
, pp. 308-309
-
-
Kim, K.1
-
5
-
-
70349268247
-
A 201.4GOPS 496 mW real-time multi-object recognition processor with bio-inspired neural perception engine
-
J.-Y. Kim, et al., A 201.4GOPS 496 mW real-time multi-object recognition processor with bio-inspired neural perception engine, Dig. Tech. Pap. IEEE ISSCC (2009) 150-151.
-
(2009)
Dig. Tech. Pap. IEEE ISSCC
, pp. 150-151
-
-
Kim, J.-Y.1
-
6
-
-
0034269226
-
Algorithms for deining visual regions-of-interest: Comparison with eye ixations
-
C. Privitera, L. Stark, Algorithms for deining visual regions-of-interest: comparison with eye ixations, IEEE Trans. Pattern Anal. Mach. Intell. 22 (9) (2000) 970-981.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.9
, pp. 970-981
-
-
Privitera, C.1
Stark, L.2
-
7
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
David G. Lowe, Distinctive image features from scale-invariant keypoints, ACM Int. J. Comput. Vision 60 (2) (2004) 91-110.
-
(2004)
ACM Int. J. Comput. Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
9
-
-
51949106765
-
The brain mimicking visual attention engine: An 80 × 60 digital cellular neural network for rapid global feature extraction
-
S. Lee, et al., The brain mimicking visual attention engine: an 80 × 60 digital cellular neural network for rapid global feature extraction, IEEE Symp. VLSI Circuits (2008) 26-27.
-
(2008)
IEEE Symp. VLSI Circuits
, pp. 26-27
-
-
Lee, S.1
-
10
-
-
0032204063
-
A model of saliency-based visual attention for rapid scene analysis
-
L. Itti, et al., A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal Mach. Intell. 20 (11) (1998).
-
(1998)
IEEE Trans. Pattern Anal Mach. Intell.
, vol.20
, Issue.11
-
-
Itti, L.1
-
11
-
-
70449396776
-
A 22.8GOPS 2.83 mW neuro-fuzzy object detection engine for fast multi-object recognition
-
M. Kim, et al., A 22.8GOPS 2.83 mW neuro-fuzzy object detection engine for fast multi-object recognition, IEEE Symp. VLSI Circuits (2009) 260-261.
-
(2009)
IEEE Symp. VLSI Circuits
, pp. 260-261
-
-
Kim, M.1
-
12
-
-
0029244586
-
VLSI architectures for video compression-a survey
-
P. Pirsch, N. Demassieux, W. Gehrke, VLSI architectures for video compression-a survey, Proc. IEEE 83 (2) (1995) 220-246.
-
(1995)
Proc. IEEE
, vol.83
, Issue.2
, pp. 220-246
-
-
Pirsch, P.1
Demassieux, N.2
Gehrke, W.3
-
15
-
-
51949109524
-
Parallelization of the scale-invariant keypoint detection algorithm for cell broadband engine architecture
-
B. Kwon, et al., Parallelization of the scale-invariant keypoint detection algorithm for cell broadband engine architecture, IEEE Consum. Commun. Networking Conf. (CCNC) (2008) 1030-1034.
-
(2008)
IEEE Consum. Commun. Networking Conf. (CCNC)
, pp. 1030-1034
-
-
Kwon, B.1
|