메뉴 건너뛰기




Volumn 52, Issue 3, 2011, Pages 1721-1727

Mathematical models of natural gas consumption

Author keywords

Least Absolute Deviations; Least Squares; Mathematical model; Natural gas consumption

Indexed keywords

CROATIA; LEAST ABSOLUTE DEVIATIONS; LEAST SQUARE; NATURAL GAS CONSUMPTION; NON-LINEAR MODEL; TEMPERATURE DATA; TEMPERATURE FORECASTS;

EID: 78650520494     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2010.10.037     Document Type: Article
Times cited : (67)

References (31)
  • 1
    • 78650522556 scopus 로고    scopus 로고
    • Natural Resources Defense Council ;[10.09.10]
    • Lehner P. Natural gas - a bridge to the new energy economy, Natural Resources Defense Council. < http://switchboard.nrdc.org/blogs/plehner/ natural-gas-a-bridge-to-the-ne.html > [10.09.10].
    • Natural Gas - A Bridge to the New Energy Economy
    • Lehner, P.1
  • 3
    • 5044251730 scopus 로고    scopus 로고
    • Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model
    • R. Gutiérrez, A. Nafidi, and R. Gutiérrez Sánchez Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model Appl Energy 80 2005 115 124
    • (2005) Appl Energy , vol.80 , pp. 115-124
    • Gutiérrez, R.1    Nafidi, A.2    Gutiérrez Sánchez, R.3
  • 4
    • 0002715074 scopus 로고    scopus 로고
    • Forecasting the short-term demand for electricity. Do neural networks stand a better chance?
    • G.A. Darbellay, and M. Slama Forecasting the short-term demand for electricity. Do neural networks stand a better chance? Int J Forecasting 16 2000 71 83
    • (2000) Int J Forecasting , vol.16 , pp. 71-83
    • Darbellay, G.A.1    Slama, M.2
  • 5
    • 3142641276 scopus 로고    scopus 로고
    • Forecasting daily urban electric load profiles using artificial neural networks
    • M. Beccali, M. Cellura, V. Lo Brano, and A. Marvuglia Forecasting daily urban electric load profiles using artificial neural networks Energy Convers Manage 45 2004 2879 2900
    • (2004) Energy Convers Manage , vol.45 , pp. 2879-2900
    • Beccali, M.1    Cellura, M.2    Lo Brano, V.3    Marvuglia, A.4
  • 6
    • 21444437355 scopus 로고    scopus 로고
    • Prediction of energy consumption and risk of excess demand in a distribution system
    • M. Thaler, I. Grabec, and A. Poredoš Prediction of energy consumption and risk of excess demand in a distribution system Physica A 355 2005 46 53
    • (2005) Physica A , vol.355 , pp. 46-53
    • Thaler, M.1    Grabec, I.2    Poredoš, A.3
  • 7
    • 78650519747 scopus 로고    scopus 로고
    • Econometric modelling of the gas demand (In Croatian)
    • T. Gelo Econometric modelling of the gas demand (In Croatian) Econ Rev 57 2006 80 96
    • (2006) Econ Rev , vol.57 , pp. 80-96
    • Gelo, T.1
  • 12
    • 55349096083 scopus 로고    scopus 로고
    • A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers
    • M. Brabec, O. Konár, E. Pelikán, and M. Malý A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers Int J Forecasting 24 2008 659 678
    • (2008) Int J Forecasting , vol.24 , pp. 659-678
    • Brabec, M.1    Konár, O.2    Pelikán, E.3    Malý, M.4
  • 13
    • 0036869810 scopus 로고    scopus 로고
    • Simple model for prediction of loads in district-heating systems
    • E. Dotzauer Simple model for prediction of loads in district-heating systems Appl Energy 73 2002 277 284
    • (2002) Appl Energy , vol.73 , pp. 277-284
    • Dotzauer, E.1
  • 16
    • 0347610130 scopus 로고    scopus 로고
    • ∞ norm approximate solutions to an overdetermined system of linear equations
    • ∞ norm approximate solutions to an overdetermined system of linear equations Digit Signal Processs 12 2002 524 560
    • (2002) Digit Signal Processs , vol.12 , pp. 524-560
    • Cadzow, J.A.1
  • 17
    • 0032935466 scopus 로고    scopus 로고
    • Training multilayer neural networks using fast global learning algorithm - Least-squares and penalized optimization methods
    • S. Cho, and T.W.S. Chow Training multilayer neural networks using fast global learning algorithm - least-squares and penalized optimization methods Neurocomputing 25 1999 115 131
    • (1999) Neurocomputing , vol.25 , pp. 115-131
    • Cho, S.1    Chow, T.W.S.2
  • 19
    • 33750455703 scopus 로고    scopus 로고
    • Approximating surfaces by moving total least squares method
    • R. Scitovski, Š. Ungar, and D. Jukić Approximating surfaces by moving total least squares method Appl Math Comput 93 1998 219 232
    • (1998) Appl Math Comput , vol.93 , pp. 219-232
    • Scitovski, R.1    Ungar, Š.2    Jukić, D.3
  • 20
    • 69249220049 scopus 로고    scopus 로고
    • Three points method for searching the best least absolute deviations plane
    • R. Cupec, R. Grbić, K. Sabo, and R. Scitovski Three points method for searching the best least absolute deviations plane Appl Math Comput 215 2009 983 994
    • (2009) Appl Math Comput , vol.215 , pp. 983-994
    • Cupec, R.1    Grbić, R.2    Sabo, K.3    Scitovski, R.4
  • 21
    • 77954679588 scopus 로고    scopus 로고
    • The best least absolute deviations line - Properties and two efficient methods
    • K. Sabo, and R. Scitovski The best least absolute deviations line - properties and two efficient methods ANZIAM J 50 2008 185 198
    • (2008) ANZIAM J , vol.50 , pp. 185-198
    • Sabo, K.1    Scitovski, R.2
  • 26
    • 0036869810 scopus 로고    scopus 로고
    • Simple model for prediction of loads in district-heating systems
    • E. Dotzauer Simple model for prediction of loads in district-heating systems Appl Energy 73 2002 277 284
    • (2002) Appl Energy , vol.73 , pp. 277-284
    • Dotzauer, E.1
  • 28
    • 0038546967 scopus 로고    scopus 로고
    • Solution of the least squares problem for logistic function
    • D. Jukić, and R. Scitovski Solution of the least squares problem for logistic function J Comput Appl Math 156 2003 159 177
    • (2003) J Comput Appl Math , vol.156 , pp. 159-177
    • Jukić, D.1    Scitovski, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.