메뉴 건너뛰기




Volumn 26, Issue 2, 2011, Pages 99-114

An adaptive neuro-fuzzy system for stock portfolio analysis

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE NEURO FUZZY SYSTEM; ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; FUNDAMENTAL ATTRIBUTES; MARKOWITZ; MULTIPLE REGRESSIONS; NEURO-FUZZY MODEL; NOISE REJECTION; PORTFOLIO OPTIMIZATION; STOCK MARKET; STOCK PORTFOLIO; TEHRAN STOCK EXCHANGES;

EID: 78650484950     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.20456     Document Type: Article
Times cited : (21)

References (36)
  • 1
    • 33846309229 scopus 로고    scopus 로고
    • Two new models for portfolio selection with stochastic returns taking fuzzy information
    • Huang X., Two new models for portfolio selection with stochastic returns taking fuzzy information. Eur J Oper Res 2007; 180: 396-405.
    • (2007) Eur J Oper Res , vol.180 , pp. 396-405
    • Huang, X.1
  • 2
    • 84995186518 scopus 로고
    • Portfolio selection
    • Markowitz H., Portfolio selection. J Finance 1952; 7: 77-91.
    • (1952) J Finance , vol.7 , pp. 77-91
    • Markowitz, H.1
  • 3
    • 84944833166 scopus 로고
    • Models of stock returns - A comparison
    • Kon SJ., Models of stock returns-a comparison. J Finance 1984; 39 (1): 147-165.
    • (1984) J Finance , vol.39 , Issue.1 , pp. 147-165
    • Kon, S.J.1
  • 5
    • 1542760556 scopus 로고    scopus 로고
    • Linear approach for solving large-scale portfolio optimization problems in a lognormal market
    • In:, Nürnberg, Germany;
    • Hamza F, Janssen J., Linear approach for solving large-scale portfolio optimization problems in a lognormal market. In: IAA/AFIR Colloquium, Nürnberg, Germany; 1996. pp 1019-1039.
    • (1996) IAA/AFIR Colloquium , pp. 1019-1039
    • Hamza, F.1    Janssen, J.2
  • 6
    • 34547920746 scopus 로고    scopus 로고
    • Fuzzy portfolio selection using genetic algorithm
    • Abiyev RH, Menekay M., Fuzzy portfolio selection using genetic algorithm. Soft Comput 2007; 11: 1157-1163.
    • (2007) Soft Comput , vol.11 , pp. 1157-1163
    • Abiyev, R.H.1    Menekay, M.2
  • 7
    • 50549099245 scopus 로고    scopus 로고
    • Mean-entropy models for fuzzy portfolio selection
    • Huang X., Mean-entropy models for fuzzy portfolio selection. IEEE Trans Fuzzy Syst 2008; 16 (4): 1096-1101.
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.4 , pp. 1096-1101
    • Huang, X.1
  • 8
    • 0033307059 scopus 로고    scopus 로고
    • A forecasting approach for stock index future using Grey theory and neural networks
    • Washington, DC, July 10-16
    • Chi SC, Chen HP, Cheng CH., A forecasting approach for stock index future using Grey theory and neural networks. In: IEEE Int Joint Conf on Neural Networks, Washington, DC, July 10-16, 1999; 1999. Vol 6, pp 3850-3855.
    • (1999) IEEE Int Joint Conf on Neural Networks , vol.6 , pp. 3850-3855
    • Chi, S.C.1    Chen, H.P.2    Cheng, C.H.3
  • 9
    • 0034851602 scopus 로고    scopus 로고
    • Stock price prediction using reinforcement learning
    • Pusan, South Korea, June 12-16
    • Lee JW., Stock price prediction using reinforcement learning. In: IEEE Int Joint Conf on Neural Networks, Pusan, South Korea, June 12-16, 2001; 2001. pp 690-695.
    • (2001) IEEE Int Joint Conf on Neural Networks , pp. 690-695
    • Lee, J.W.1
  • 10
    • 24644515811 scopus 로고    scopus 로고
    • An investigation of the hybrid forecasting models for stock price variation in Taiwan
    • Chang PC, Wang YW, Yang WN., An investigation of the hybrid forecasting models for stock price variation in Taiwan. J Chin Inst Ind Eng 2004; 21 (4): 358-368.
    • (2004) J Chin Inst Ind Eng , vol.21 , Issue.4 , pp. 358-368
    • Chang, P.C.1    Wang, Y.W.2    Yang, W.N.3
  • 11
    • 0036131678 scopus 로고    scopus 로고
    • Predicting stock price using fuzzy grey prediction system
    • Wang Y-F., Predicting stock price using fuzzy grey prediction system. Expert Syst Appl 2002; 22: 33-39.
    • (2002) Expert Syst Appl , vol.22 , pp. 33-39
    • Wang, Y.-F.1
  • 12
    • 40249108253 scopus 로고    scopus 로고
    • A refined fuzzy time series model for stock market forecasting
    • Jilani TA, Burney SMA., A refined fuzzy time series model for stock market forecasting. Physica A 2008; 387: 2857-2862.
    • (2008) Physica A , vol.387 , pp. 2857-2862
    • Jilani, T.A.1    Burney, S.M.A.2
  • 13
    • 34248582401 scopus 로고    scopus 로고
    • A TSK type fuzzy rule based system for stock price prediction
    • Chang PC, Liu CH., A TSK type fuzzy rule based system for stock price prediction. Expert Syst Appl 2008; 34: 135-144.
    • (2008) Expert Syst Appl , vol.34 , pp. 135-144
    • Chang, P.C.1    Liu, C.H.2
  • 14
    • 53849104293 scopus 로고    scopus 로고
    • A type-2 fuzzy rule-based expert system model for stock price analysis
    • Fazel Zarandi MH, Rezaee B, Turksen IB, Neshat E., A type-2 fuzzy rule-based expert system model for stock price analysis. Expert Syst Appl 2009; 36: 139-154.
    • (2009) Expert Syst Appl , vol.36 , pp. 139-154
    • Fazel Zarandi, M.H.1    Rezaee, B.2    Turksen, I.B.3    Neshat, E.4
  • 18
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference systems
    • Jang J-SR., ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cybernet 1993; 23 (3): 665-685.
    • (1993) IEEE Trans Syst Man Cybernet , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 19
    • 49249089536 scopus 로고    scopus 로고
    • Novel hybrid learning algorithms for tuning ANFIS parameters as identifiers using fuzzy PSO
    • Sanya, China, April 6-8
    • Teshnehlab M, Aliyari Shoorehdeli M, Sedigh AK., Novel hybrid learning algorithms for tuning ANFIS parameters as identifiers using fuzzy PSO. In: IEEE Int Conf on Networking, Sensing and Control, Sanya, China, April 6-8, 2008; 2008. pp 111-116.
    • (2008) IEEE Int Conf on Networking, Sensing and Control , pp. 111-116
    • Teshnehlab, M.1    Aliyari Shoorehdeli, M.2    Sedigh, A.K.3
  • 20
    • 0141501530 scopus 로고    scopus 로고
    • Neuro-fuzzy methods for nonlinear system identification
    • Babuška R, Verbruggen H., Neuro-fuzzy methods for nonlinear system identification. Annu Rev Control 2003; 27: 73-85.
    • (2003) Annu Rev Control , vol.27 , pp. 73-85
    • Babuška, R.1    Verbruggen, H.2
  • 22
    • 19644373975 scopus 로고    scopus 로고
    • Intelligent learning of fuzzy logic controllers via neural network and genetic algorithm
    • Denver, CO
    • Kumar M, Garg DP., Intelligent learning of fuzzy logic controllers via neural network and genetic algorithm. In: Proc 2004 JUSFA 2004 Japan-USA Symp on Flexible Automation Denver, CO; 2004. pp 19-21.
    • (2004) Proc 2004 JUSFA 2004 Japan-USA Symp on Flexible Automation , pp. 19-21
    • Kumar, M.1    Garg, D.P.2
  • 23
    • 25844530263 scopus 로고    scopus 로고
    • GA-TSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms
    • Tang AM, Quek C, Ng GS., GA-TSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms. Expert Syst Appl 2005; 29: 769-781.
    • (2005) Expert Syst Appl , vol.29 , pp. 769-781
    • Tang, A.M.1    Quek, C.2    Ng, G.S.3
  • 24
    • 18744430576 scopus 로고    scopus 로고
    • A comparative study of learning methods in tuning parameters of fuzzy membership functions
    • Tokyo, Japan, Oct 12-15 1999
    • Chen MS., A comparative study of learning methods in tuning parameters of fuzzy membership functions. In: IEEE SMC '99 Conf Proc, Tokyo, Japan, Oct 12-15, 1999; 1999. Vol 3, pp 40-44.
    • (1999) IEEE SMC '99 Conf Proc , vol.3 , pp. 40-44
    • Chen, M.S.1
  • 25
    • 34548604303 scopus 로고    scopus 로고
    • Comparison of different strategies of utilizing fuzzy clustering in structure identification
    • Kilic K, Uncu O, Turksen IB., Comparison of different strategies of utilizing fuzzy clustering in structure identification. Inform Sci 2007; 177: 5153-5162.
    • (2007) Inform Sci , vol.177 , pp. 5153-5162
    • Kilic, K.1    Uncu, O.2    Turksen, I.B.3
  • 27
    • 9544250381 scopus 로고    scopus 로고
    • A cluster validation index for GK cluster analysis based on relative degree of sharing
    • Kim YI, Kim DW, Lee D, Lee KH., A cluster validation index for GK cluster analysis based on relative degree of sharing. Inform Sci 2004; 168: 225-242.
    • (2004) Inform Sci , vol.168 , pp. 225-242
    • Kim, Y.I.1    Kim, D.W.2    Lee, D.3    Lee, K.H.4
  • 28
    • 0036454126 scopus 로고    scopus 로고
    • Improved covariance estimation for Gustafson-Kessel clustering
    • Honolulu, HI, May 12-17 2002
    • Babuška R, Van Der Veen PJ, Kaymak U., Improved covariance estimation for Gustafson-Kessel clustering, In: Proc 2002 IEEE Int Conf on Fuzzy Systems, Honolulu, HI, May 12-17, 2002; 2002. pp 1081-1085.
    • (2002) Proc 2002 IEEE Int Conf on Fuzzy Systems , pp. 1081-1085
    • Babuška, R.1    Van Der Veen, P.J.2    Kaymak, U.3
  • 29
    • 0028754823 scopus 로고
    • Generation of membership functions via possibilistic clustering
    • Krishnapuram R., Generation of membership functions via possibilistic clustering. IEEE Int Conf on Fuzzy Systems 2; 1994. pp 902-908.
    • (1994) IEEE Int Conf on Fuzzy Systems 2 , pp. 902-908
    • Krishnapuram, R.1
  • 30
    • 33646061971 scopus 로고    scopus 로고
    • Genetic polynomial regression as input selection algorithm for non-linear identification
    • Maertens K, De Baerdemaeker J, Babuška R., Genetic polynomial regression as input selection algorithm for non-linear identification. Soft Comput 2006; 10: 785-795.
    • (2006) Soft Comput , vol.10 , pp. 785-795
    • Maertens, K.1    De Baerdemaeker, J.2    Babuška, R.3
  • 31
    • 0027544110 scopus 로고
    • A fuzzy logic based approach to qualitative modeling
    • Sugeno M, Yasukawa T., A fuzzy logic based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1993; 1: 7-31.
    • (1993) IEEE Trans Fuzzy Syst , vol.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 33
    • 11244298514 scopus 로고    scopus 로고
    • Localm-fsm: A new fuzzy system modeling approach using a two-step fuzzy inference mechanism based on local fuzziness level
    • Uncu O, Turksen IB, Kilic K., Localm-fsm: a new fuzzy system modeling approach using a two-step fuzzy inference mechanism based on local fuzziness level, In: Proc Int Fuzzy Systems Association World Congress; 2003. pp 191-194.
    • (2003) Proc Int Fuzzy Systems Association World Congress , pp. 191-194
    • Uncu, O.1    Turksen, I.B.2    Kilic, K.3
  • 34
    • 38649131928 scopus 로고    scopus 로고
    • Expert systems and evolutionary computing for financial investing: A review
    • Rada R., Expert systems and evolutionary computing for financial investing: a review. Expert Syst Appl 2008; 34: 2232-2240.
    • (2008) Expert Syst Appl , vol.34 , pp. 2232-2240
    • Rada, R.1
  • 36
    • 77950187238 scopus 로고    scopus 로고
    • Adapted neuro-fuzzy inference system on indirect approach TSK fuzzy rule base for stock market analysis
    • Esfahanipour A, Aghamiri W., Adapted neuro-fuzzy inference system on indirect approach TSK fuzzy rule base for stock market analysis. Expert Syst Appl 2010; 37: 4742-4748.
    • (2010) Expert Syst Appl , vol.37 , pp. 4742-4748
    • Esfahanipour, A.1    Aghamiri, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.