메뉴 건너뛰기




Volumn 28, Issue 1-2, 2011, Pages 557-567

Macroeconomics, finance, commodities: Interactions with carbon markets in a data-rich model

Author keywords

Carbon price; Commodities; Factor models; FAVAR; Finance; Macroeconomics

Indexed keywords


EID: 78650241317     PISSN: 02649993     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.econmod.2010.06.016     Document Type: Article
Times cited : (55)

References (43)
  • 1
    • 79956369965 scopus 로고    scopus 로고
    • Estimation and forecasting in large datasets with conditionally heteroskedastic dynamic common factors
    • European Central Bank
    • Alessi L., Barigozzi M., Capasso M. Estimation and forecasting in large datasets with conditionally heteroskedastic dynamic common factors. Working Paper #1115 2009, European Central Bank.
    • (2009) Working Paper #1115
    • Alessi, L.1    Barigozzi, M.2    Capasso, M.3
  • 3
    • 70350121565 scopus 로고    scopus 로고
    • Testing conditional factor models
    • Columbia University
    • Ang A., Kristensen D. Testing conditional factor models. Working Paper 2010, Columbia University.
    • (2010) Working Paper
    • Ang, A.1    Kristensen, D.2
  • 4
    • 64449083307 scopus 로고    scopus 로고
    • Using stocks or portfolios in tests of factor models
    • Columbia University
    • Ang A., Liu J., Schwarz K. Using stocks or portfolios in tests of factor models. Working Paper 2008, Columbia University.
    • (2008) Working Paper
    • Ang, A.1    Liu, J.2    Schwarz, K.3
  • 5
    • 0036221554 scopus 로고    scopus 로고
    • Determining the number of factors in approximate factor models
    • Bai J., Ng S. Determining the number of factors in approximate factor models. Econometrica 2002, 70(1):191-221.
    • (2002) Econometrica , vol.70 , Issue.1 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 6
    • 33644538319 scopus 로고    scopus 로고
    • Evaluating latent and observed factors in macroeconomics and finance
    • Bai J., Ng S. Evaluating latent and observed factors in macroeconomics and finance. Journal of Econometrics 2006, 113:507-537.
    • (2006) Journal of Econometrics , vol.113 , pp. 507-537
    • Bai, J.1    Ng, S.2
  • 7
    • 33846119127 scopus 로고    scopus 로고
    • Determining the number of primitive shocks in factor models
    • Bai J., Ng S. Determining the number of primitive shocks in factor models. Journal of Business and Economic Statistics 2007, 25(1):52-60.
    • (2007) Journal of Business and Economic Statistics , vol.25 , Issue.1 , pp. 52-60
    • Bai, J.1    Ng, S.2
  • 8
    • 78650250298 scopus 로고    scopus 로고
    • Principal components estimation and identification of the factors
    • Columbia University
    • Bai J., Ng S. Principal components estimation and identification of the factors. Working Paper 2010, Columbia University.
    • (2010) Working Paper
    • Bai, J.1    Ng, S.2
  • 11
  • 13
    • 15544377383 scopus 로고    scopus 로고
    • Measuring monetary policy: a factor augmented vector autoregressive (FAVAR) approach
    • Bernanke B., Boivin J., Eliasz P. Measuring monetary policy: a factor augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics 2005, 120:387-422.
    • (2005) Quarterly Journal of Economics , vol.120 , pp. 387-422
    • Bernanke, B.1    Boivin, J.2    Eliasz, P.3
  • 15
    • 34250724216 scopus 로고    scopus 로고
    • Understanding and comparing factor-based forecasts
    • Boivin J., Ng S. Understanding and comparing factor-based forecasts. International Journal of Central Banking 2005, 1(3):117-151.
    • (2005) International Journal of Central Banking , vol.1 , Issue.3 , pp. 117-151
    • Boivin, J.1    Ng, S.2
  • 16
    • 33646162895 scopus 로고    scopus 로고
    • Are more data always better for factor analysis
    • Boivin J., Ng S. Are more data always better for factor analysis. Journal of Econometrics 2006, 132:169-194.
    • (2006) Journal of Econometrics , vol.132 , pp. 169-194
    • Boivin, J.1    Ng, S.2
  • 20
    • 67349218423 scopus 로고    scopus 로고
    • Carbon futures and macroeconomic risk factors: a view from the EU ETS
    • Chevallier J. Carbon futures and macroeconomic risk factors: a view from the EU ETS. Energy Economics 2009, 31:614-625.
    • (2009) Energy Economics , vol.31 , pp. 614-625
    • Chevallier, J.1
  • 21
    • 70449089152 scopus 로고    scopus 로고
    • Monetary shocks: what have we learned and to what end?
    • Elsevier, J. Taylor, M. Woodford (Eds.)
    • Christiano L., Eichenbaum M., Evans C. Monetary shocks: what have we learned and to what end?. Handbook of Macroeconomics 1999, 1A:65-148. Elsevier. J. Taylor, M. Woodford (Eds.).
    • (1999) Handbook of Macroeconomics , vol.1 A , pp. 65-148
    • Christiano, L.1    Eichenbaum, M.2    Evans, C.3
  • 23
    • 0141799949 scopus 로고    scopus 로고
    • Do financial variables help forecasting inflation and real activity in the Euro area?
    • Forni M., Hallin M., Lippi M., Reichlin L. Do financial variables help forecasting inflation and real activity in the Euro area?. Journal of Monetary Economics 2003, 50(6):1243-1255.
    • (2003) Journal of Monetary Economics , vol.50 , Issue.6 , pp. 1243-1255
    • Forni, M.1    Hallin, M.2    Lippi, M.3    Reichlin, L.4
  • 24
    • 74149090687 scopus 로고    scopus 로고
    • Opening the black box: structural factor models with large cross sections
    • Forni M., Giannone D., Lippi M., Reichlin L. Opening the black box: structural factor models with large cross sections. Econometric Theory 2009, 25(5):1319-1347.
    • (2009) Econometric Theory , vol.25 , Issue.5 , pp. 1319-1347
    • Forni, M.1    Giannone, D.2    Lippi, M.3    Reichlin, L.4
  • 26
    • 33646477830 scopus 로고    scopus 로고
    • VARs, common factors and the empirical validation of equilibrium business cycle models
    • Giannone D., Reichlin L., Sala L. VARs, common factors and the empirical validation of equilibrium business cycle models. Journal of Econometrics 2006, 132(1):257-279.
    • (2006) Journal of Econometrics , vol.132 , Issue.1 , pp. 257-279
    • Giannone, D.1    Reichlin, L.2    Sala, L.3
  • 27
    • 71349086095 scopus 로고    scopus 로고
    • The effect of monetary policy on real house price growth in South Africa: a factor augmented vector autoregression (FAVAR) approach
    • Gupta R., Jurgilas M., Kabundi A. The effect of monetary policy on real house price growth in South Africa: a factor augmented vector autoregression (FAVAR) approach. Economic Modelling 2010, 27:315-323.
    • (2010) Economic Modelling , vol.27 , pp. 315-323
    • Gupta, R.1    Jurgilas, M.2    Kabundi, A.3
  • 28
    • 34250778808 scopus 로고    scopus 로고
    • Determining the number of factors in the general dynamic factor model
    • Hallin M., Liška R. Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association 2007, 102:603-617.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 603-617
    • Hallin, M.1    Liška, R.2
  • 30
    • 33845316866 scopus 로고    scopus 로고
    • The empirical risk-return tradeoff: a factor analysis approach
    • Ludvigson S.C., Ng S. The empirical risk-return tradeoff: a factor analysis approach. Journal of Financial Economics 2007, 83:171-222.
    • (2007) Journal of Financial Economics , vol.83 , pp. 171-222
    • Ludvigson, S.C.1    Ng, S.2
  • 31
    • 73449141437 scopus 로고    scopus 로고
    • Macro factors in bond risk premia
    • Ludvigson S.C., Ng S. Macro factors in bond risk premia. Review of Financial Studies 2009, 22(12):5027-5067.
    • (2009) Review of Financial Studies , vol.22 , Issue.12 , pp. 5027-5067
    • Ludvigson, S.C.1    Ng, S.2
  • 32
    • 78650230657 scopus 로고    scopus 로고
    • forthcoming. A factor analysis of bond risk premia. Handbook of Applied Econometrics.
    • Ludvigson, S.C., Ng, S., forthcoming. A factor analysis of bond risk premia. Handbook of Applied Econometrics.
    • Ludvigson, S.C.1    Ng, S.2
  • 33
    • 52149093670 scopus 로고    scopus 로고
    • Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach
    • Moench E. Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach. Journal of Econometrics 2008, 146(1):26-43.
    • (2008) Journal of Econometrics , vol.146 , Issue.1 , pp. 26-43
    • Moench, E.1
  • 34
    • 78650250840 scopus 로고    scopus 로고
    • in press. A Hierarchical Factor Analysis of US Housing Market Dynamics. Econometrics Journal.
    • Moench, E., Ng, S., in press. A Hierarchical Factor Analysis of US Housing Market Dynamics. Econometrics Journal.
    • Moench, E.1    Ng, S.2
  • 35
    • 58849123275 scopus 로고    scopus 로고
    • The transmission of international shocks: a factor-augmented VAR approach
    • Mumtaz H., Surico P. The transmission of international shocks: a factor-augmented VAR approach. Journal of Money, Credit and Banking 2009, 41(1):71-98.
    • (2009) Journal of Money, Credit and Banking , vol.41 , Issue.1 , pp. 71-98
    • Mumtaz, H.1    Surico, P.2
  • 36
    • 22144440111 scopus 로고    scopus 로고
    • Time varying structural vector autoregressions and monetary policy
    • Primiceri G. Time varying structural vector autoregressions and monetary policy. Review of Economic Studies 2005, 72:821-852.
    • (2005) Review of Economic Studies , vol.72 , pp. 821-852
    • Primiceri, G.1
  • 37
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictor
    • Stock J., Watson M. Forecasting using principal components from a large number of predictor. Journal of the American Statistical Association 2002, 97:1167-1179.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 1167-1179
    • Stock, J.1    Watson, M.2
  • 39
    • 33747348274 scopus 로고    scopus 로고
    • Implications of dynamic factor models for VAR analysis
    • Stock J., Watson M. Implications of dynamic factor models for VAR analysis. NBER Working Paper # 11467 2005.
    • (2005) NBER Working Paper # 11467
    • Stock, J.1    Watson, M.2
  • 40
    • 67649342377 scopus 로고    scopus 로고
    • Forecasting using many predictors
    • North Holland, G. Elliott, C. Granger, T. Timmerman (Eds.)
    • Stock J., Watson M. Forecasting using many predictors. Handbook of Economic Forecasting 2006, 1:515-554. North Holland. G. Elliott, C. Granger, T. Timmerman (Eds.).
    • (2006) Handbook of Economic Forecasting , vol.1 , pp. 515-554
    • Stock, J.1    Watson, M.2
  • 41
    • 77956269993 scopus 로고    scopus 로고
    • Index investing and the financialization of commodities
    • Princeton University, USA
    • Tang K., Xiong W. Index investing and the financialization of commodities. Working Paper 2009, Princeton University, USA.
    • (2009) Working Paper
    • Tang, K.1    Xiong, W.2
  • 42
    • 78650238654 scopus 로고    scopus 로고
    • State and trends of the carbon market 2009
    • World Bank, Washington DC, USA
    • World Bank State and trends of the carbon market 2009. Report 2009, Washington DC, USA.
    • (2009) Report
  • 43
    • 74349110756 scopus 로고    scopus 로고
    • Macroeconomic factors and oil futures prices: a data-rich model
    • Zagaglia P. Macroeconomic factors and oil futures prices: a data-rich model. Energy Economics 2010, 32:409-417.
    • (2010) Energy Economics , vol.32 , pp. 409-417
    • Zagaglia, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.