메뉴 건너뛰기




Volumn 6444 LNCS, Issue PART 2, 2010, Pages 533-540

Speed up image annotation based on LVQ technique with affinity propagation algorithm

Author keywords

affinity propagation; automatic image annotation; learning vector quantization; support vector machine; training speed

Indexed keywords

AFFINITY PROPAGATION; AUTOMATIC IMAGE ANNOTATION; CLASSIFICATION ACCURACY; IMAGE ANNOTATION; LEARNING VECTOR QUANTIZATION; NOVEL METHODS; SPEED PERFORMANCE; SPEED-UPS; SVM CLASSIFIERS; TRAINING DATA; TRAINING SAMPLE; TRAINING SPEED;

EID: 78650216512     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-17534-3_66     Document Type: Conference Paper
Times cited : (4)

References (19)
  • 1
    • 45349097640 scopus 로고    scopus 로고
    • Universal and Adapted Vocabularies for Generic Visual Categorization
    • Perronnin, F.: Universal and Adapted Vocabularies for Generic Visual Categorization. IEEE Trans. PAMI 30(7), 1243-1256 (2008)
    • (2008) IEEE Trans. PAMI , vol.30 , Issue.7 , pp. 1243-1256
    • Perronnin, F.1
  • 2
    • 33847419773 scopus 로고    scopus 로고
    • Supervised Learning of Semantic Classes for Image Annotation and Retrieval
    • Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised Learning of Semantic Classes for Image Annotation and Retrieval. IEEE Trans. PAMI 29(3), 394-410 (2007)
    • (2007) IEEE Trans. PAMI , vol.29 , Issue.3 , pp. 394-410
    • Carneiro, G.1    Chan, A.B.2    Moreno, P.J.3    Vasconcelos, N.4
  • 4
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Machine Learning Research 5, 913-939 (2004)
    • (2004) J. Machine Learning Research , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.Z.2
  • 8
    • 77957244048 scopus 로고    scopus 로고
    • Texture Image Classification Using Modular Radial Basis Function Neural Networks
    • Chang, C.Y., Wang, H.J., Fu, S.Y.: Texture Image Classification Using Modular Radial Basis Function Neural Networks. J. of Electronic Image 19(1), 1-11 (2010)
    • (2010) J. of Electronic Image , vol.19 , Issue.1 , pp. 1-11
    • Chang, C.Y.1    Wang, H.J.2    Fu, S.Y.3
  • 9
    • 34447645656 scopus 로고    scopus 로고
    • Evaluating the performance in automatic image annotation: Example case by adaptive fusion of global image features
    • Viitaniemi, V., Laaksonen, J.: Evaluating the performance in automatic image annotation: Example case by adaptive fusion of global image features. Image Comm. 22(6), 557-568 (2007)
    • (2007) Image Comm. , vol.22 , Issue.6 , pp. 557-568
    • Viitaniemi, V.1    Laaksonen, J.2
  • 11
    • 79851469986 scopus 로고    scopus 로고
    • Feature Data Optimization with LVQ Technique in Semantic Image Annotation
    • accepted to
    • Jiang, Z., He, J., Guo, P.: Feature Data Optimization with LVQ Technique in Semantic Image Annotation, accepted to ISDA 2010 (2010)
    • (2010) ISDA 2010
    • Jiang, Z.1    He, J.2    Guo, P.3
  • 12
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by Passing Messages between Data Points
    • Frey, B.J., Dueck, D.: Clustering by Passing Messages between Data Points. Science 315, 972-976 (2007)
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 14
    • 80052787137 scopus 로고    scopus 로고
    • Image Modeling with Combined Optimization Techniques for Image Semantic Annotation
    • in press
    • Yang, D., Guo, P.: Image Modeling with Combined Optimization Techniques for Image Semantic Annotation. Neural Computing and Applications (in press, 2010)
    • (2010) Neural Computing and Applications
    • Yang, D.1    Guo, P.2
  • 15
    • 85027710732 scopus 로고    scopus 로고
    • Stanford vision lab, http://vision.stanford.edu/resources-links.html
    • Stanford Vision Lab
  • 18
    • 78650194876 scopus 로고    scopus 로고
    • LIBSVM-A, http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • LIBSVM-A
  • 19
    • 44649172193 scopus 로고    scopus 로고
    • A Study of Regularized Gaussian Classifier in High-Dimension Small Sample Set Case Based on MDL Principle with Application to Spectrum Recognition
    • Guo, P., Jia, Y.D., Lyu, M.R.: A Study of Regularized Gaussian Classifier in High-Dimension Small Sample Set Case Based on MDL Principle with Application to Spectrum Recognition. Patt. Recog. 41(9), 2842-2854 (2008)
    • (2008) Patt. Recog. , vol.41 , Issue.9 , pp. 2842-2854
    • Guo, P.1    Jia, Y.D.2    Lyu, M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.