|
Volumn 29, Issue 8-9, 2010, Pages 635-643
|
QSPR analysis of copolymers by recursive neural networks: Prediction of the glass transition temperature of (meth)acrylic random copolymers
|
Author keywords
Glass transition temperature; Phase transitions; Polymers; QSAR QSPR; Recursive neural network
|
Indexed keywords
COMPUTATIONAL CHEMISTRY;
FORECASTING;
GLASS;
NEURAL NETWORKS;
STATISTICAL TESTS;
TEMPERATURE;
DATA SET;
DESCRIPTORS;
GLASS TRANSITION TEMPERATURE TG;
LABELLED TREES;
NEURAL NETWORK PREDICTIONS;
QSAR/QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP;
QUANTITATIVE STRUCTURE PROPERTY RELATIONSHIPS;
RANDOM COPOLYMER;
RECURSIVE NEURAL NETWORKS;
RELATIONSHIP ANALYSIS;
GLASS TRANSITION;
ACRYLIC ACID COPOLYMER;
COPOLYMER;
POLYMER;
ARTICLE;
CHEMICAL STRUCTURE;
GLASS TRANSITION TEMPERATURE;
MACHINE LEARNING;
MACROMOLECULE;
PRIORITY JOURNAL;
QUANTITATIVE STRUCTURE PROPERTY RELATION;
RECURSIVE NEURAL NETWORK;
STEREOCHEMISTRY;
TECHNOLOGY;
TEMPERATURE DEPENDENCE;
|
EID: 78650195945
PISSN: 18681743
EISSN: 18681751
Source Type: Journal
DOI: 10.1002/minf.201000079 Document Type: Article |
Times cited : (9)
|
References (21)
|