메뉴 건너뛰기




Volumn 6444 LNCS, Issue PART 2, 2010, Pages 26-33

Tensor based simultaneous feature extraction and sample weighting for EEG classification

Author keywords

classification; Feature extraction; multi linear PCA; tensor decomposition

Indexed keywords

ACCURACY IMPROVEMENT; CLASSIFICATION; COMMON SPATIAL PATTERNS; EEG CLASSIFICATION; EEG SIGNALS; LINEAR PRINCIPAL COMPONENT; MULTI-LINEAR PCA; SAMPLE WEIGHTING; TENSOR DECOMPOSITION; MOTOR IMAGERY;

EID: 78650184915     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-17534-3_4     Document Type: Conference Paper
Times cited : (15)

References (6)
  • 4
    • 78751515806 scopus 로고    scopus 로고
    • Tensor Decompositions for Feature Extraction and Classification of High Dimensional Datasets
    • October
    • Phan, A.H., Cichocki, A.: Tensor Decompositions for Feature Extraction and Classification of High Dimensional Datasets. IEICE NOLTA E93-N(10) (October 2010)
    • (2010) IEICE NOLTA , vol.E93-N , Issue.10
    • Phan, A.H.1    Cichocki, A.2
  • 6
    • 2442671691 scopus 로고    scopus 로고
    • Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
    • Dornhege, G., Blankertz, B., Curio, G., Müller, K.-R.: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomedical Engineering 51(6), 993-1002 (2004)
    • (2004) IEEE Trans. Biomedical Engineering , vol.51 , Issue.6 , pp. 993-1002
    • Dornhege, G.1    Blankertz, B.2    Curio, G.3    Müller, K.-R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.