메뉴 건너뛰기




Volumn 31, Issue 3, 2010, Pages 215-221

Preference of echo features for classification of seafloor sediments using neural networks

Author keywords

Classification of seafloor sediments; Echo features; Multilayer perceptron

Indexed keywords

BACKSCATTERING; MULTILAYER NEURAL NETWORKS; MULTILAYERS; NETWORK LAYERS; SEDIMENTS;

EID: 78650172900     PISSN: 00253235     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11001-010-9101-1     Document Type: Article
Times cited : (7)

References (34)
  • 1
    • 0027576691 scopus 로고
    • A methodology for acoustic seafloor classification
    • Alexandrou D, Pantzartzis D (1993) A methodology for acoustic seafloor classification. IEEE J Ocean Eng 18: 81-86.
    • (1993) IEEE J Ocean Eng , vol.18 , pp. 81-86
    • Alexandrou, D.1    Pantzartzis, D.2
  • 2
    • 77955056657 scopus 로고    scopus 로고
    • A Q-Ising model application for linear-time image segmentation
    • Bentrem FW (2010) A Q-Ising model application for linear-time image segmentation. Central Eur J Phys 8: 689-698.
    • (2010) Central Eur J Phys , vol.8 , pp. 689-698
    • Bentrem, F.W.1
  • 3
  • 4
    • 84945304025 scopus 로고    scopus 로고
    • A neural network based seafloor classification using acoustic backscatter
    • N. R. Pal and M. Sugeno (Eds.), Berlin: Springer
    • Chakraborty B (2002) A neural network based seafloor classification using acoustic backscatter. In: Pal NR, Sugeno M (eds) Advances in soft computing-AFSS. Springer, Berlin, pp 245-250.
    • (2002) Advances in Soft Computing-AFSS , pp. 245-250
    • Chakraborty, B.1
  • 5
    • 78650177259 scopus 로고    scopus 로고
    • Seafloor characterization using time-dependent acoustic backscatter: Study of Arabian Sea
    • Kobe, Japan
    • Chakraborty B, De C (2008) Seafloor characterization using time-dependent acoustic backscatter: study of Arabian Sea. Proc IEEE Oceans 2008, Kobe, Japan.
    • (2008) Proc IEEE Oceans 2008
    • Chakraborty, B.1    De, C.2
  • 6
    • 0034269365 scopus 로고    scopus 로고
    • Sea bottom characterization using multibeam echo sounder angular backscatter: an application of the composite roughness theory
    • Chakraborty B, Schenke HW, Kodagali V, Hagen R (2000) Sea bottom characterization using multibeam echo sounder angular backscatter: an application of the composite roughness theory. IEEE Trans Geosci Rem Sens 38: 2419-2422.
    • (2000) IEEE Trans Geosci Rem Sens , vol.38 , pp. 2419-2422
    • Chakraborty, B.1    Schenke, H.W.2    Kodagali, V.3    Hagen, R.4
  • 7
  • 8
    • 0037261867 scopus 로고    scopus 로고
    • Sea-floor classification using multibeam echo-sounding angular backscatter data: a real-time approach employing hybrid neural network architecture
    • Chakraborty B, Kodagali V, Baracho J (2003) Sea-floor classification using multibeam echo-sounding angular backscatter data: a real-time approach employing hybrid neural network architecture. IEEE J Ocean Eng 28: 121-128.
    • (2003) IEEE J Ocean Eng , vol.28 , pp. 121-128
    • Chakraborty, B.1    Kodagali, V.2    Baracho, J.3
  • 9
    • 3342921749 scopus 로고    scopus 로고
    • Seafloor classification using echo-waveforms: a method employing hybrid neural network architecture
    • Chakraborty B, Mahale V, Sousa C de, Das P (2004) Seafloor classification using echo-waveforms: a method employing hybrid neural network architecture. IEEE Geosci Rem Sens Lett 1: 196-200.
    • (2004) IEEE Geosci Rem Sens Lett , vol.1 , pp. 196-200
    • Chakraborty, B.1    Mahale, V.2    de Sousa, C.3    Das, P.4
  • 12
    • 70350335072 scopus 로고    scopus 로고
    • Acoustic characterization of seafloor sediment employing a hybrid method of neural network architecture and fuzzy algorithm
    • De C, Chakraborty B (2009) Acoustic characterization of seafloor sediment employing a hybrid method of neural network architecture and fuzzy algorithm. IEEE Geosci Rem Sens Lett 6: 743-747.
    • (2009) IEEE Geosci Rem Sens Lett , vol.6 , pp. 743-747
    • De, C.1    Chakraborty, B.2
  • 13
    • 0026939766 scopus 로고
    • A neural network based hybrid system for detection, characterization, and classification of short-duration oceanic signals
    • Ghosh J, Deuser LM, Beck SD (1992) A neural network based hybrid system for detection, characterization, and classification of short-duration oceanic signals. IEEE J Ocean Eng 17: 351-363.
    • (1992) IEEE J Ocean Eng , vol.17 , pp. 351-363
    • Ghosh, J.1    Deuser, L.M.2    Beck, S.D.3
  • 15
    • 76749126340 scopus 로고    scopus 로고
    • Estimation of geoacoustic properties of marine sediment using a hybrid differential evolution inversion method
    • Jiang Y-M, Chapman NR, Gerstoft P (2010) Estimation of geoacoustic properties of marine sediment using a hybrid differential evolution inversion method. IEEE J Ocean Eng 35: 59-69.
    • (2010) IEEE J Ocean Eng , vol.35 , pp. 59-69
    • Jiang, Y.-M.1    Chapman, N.R.2    Gerstoft, P.3
  • 17
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP Magazine 4: 4-22.
    • (1987) IEEE ASSP Magazine , vol.4 , pp. 4-22
    • Lippmann, R.P.1
  • 20
    • 0029344436 scopus 로고
    • Application of neural and statistical classifiers to the problem of seafloor characterization
    • Michalopoulou Z-H, Alexandrou D, de Moustier C (1995) Application of neural and statistical classifiers to the problem of seafloor characterization. IEEE J Ocean Eng 20: 190-197.
    • (1995) IEEE J Ocean Eng , vol.20 , pp. 190-197
    • Michalopoulou, Z.-H.1    Alexandrou, D.2    de Moustier, C.3
  • 22
    • 0003139019 scopus 로고
    • Application of multiple echoes energy measurements for evaluation of sea bottom type
    • Orlowski A (1984) Application of multiple echoes energy measurements for evaluation of sea bottom type. Oceanologia 19: 61-78.
    • (1984) Oceanologia , vol.19 , pp. 61-78
    • Orlowski, A.1
  • 23
    • 0023997877 scopus 로고
    • Swathe seabed classification
    • Pace NG, Gao H (1988) Swathe seabed classification. IEEE J Ocean Eng 13: 83-90.
    • (1988) IEEE J Ocean Eng , vol.13 , pp. 83-90
    • Pace, N.G.1    Gao, H.2
  • 24
    • 50949132616 scopus 로고    scopus 로고
    • Depth dependence correction for normal incidence echo sounding
    • Delft, The Netherlands, July 2004
    • Pouliquen E (2004) Depth dependence correction for normal incidence echo sounding. Proc Seventh European Conf Underwater Acoustics, ECUA 2004, Delft, The Netherlands, July 2004.
    • (2004) Proc Seventh European Conf Underwater Acoustics, ECUA 2004
    • Pouliquen, E.1
  • 25
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: the RPROP algorithm
    • Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. Proc IEEE Intl Conf Neural Netw 1: 586-591.
    • (1993) Proc IEEE Intl Conf Neural Netw , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 26
    • 85164264978 scopus 로고
    • Nomenclature based on sand-silt-clay ratios
    • Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sed Petrology 24: 151-158.
    • (1954) J Sed Petrology , vol.24 , pp. 151-158
    • Shepard, F.P.1
  • 27
    • 0345381898 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy and fuzzy decision tree classifiers as applied to seafloor characterization
    • Stepnowski A, Moszynski M, Dung TV (2003) Adaptive neuro-fuzzy and fuzzy decision tree classifiers as applied to seafloor characterization. Acoust Phys 49: 193-202.
    • (2003) Acoust Phys , vol.49 , pp. 193-202
    • Stepnowski, A.1    Moszynski, M.2    Dung, T.V.3
  • 28
    • 0042713122 scopus 로고
    • A hierarchical approach to seafloor classification using neural networks
    • Stewart WK, Marra M, Jiang M (1992) A hierarchical approach to seafloor classification using neural networks. Proc IEEE Oceans '92, I: 109-113.
    • (1992) Proc IEEE Oceans '92 , vol.1 , pp. 109-113
    • Stewart, W.K.1    Marra, M.2    Jiang, M.3
  • 29
    • 0028406404 scopus 로고
    • A neural network approach to classification of sidescan sonar imagery from a Midocean Ridge area
    • Stewart WK, Jiang M, Marra M (1994) A neural network approach to classification of sidescan sonar imagery from a Midocean Ridge area. IEEE J Ocean Eng 19: 214-224.
    • (1994) IEEE J Ocean Eng , vol.19 , pp. 214-224
    • Stewart, W.K.1    Jiang, M.2    Marra, M.3
  • 30
    • 0033737838 scopus 로고    scopus 로고
    • The use of fractal properties of echo signals for acoustical classification of bottom sediments
    • Tegowski J, Lubniewski Z (2000) The use of fractal properties of echo signals for acoustical classification of bottom sediments. Acta Acustica United Acustica 86: 276-282.
    • (2000) Acta Acustica United Acustica , vol.86 , pp. 276-282
    • Tegowski, J.1    Lubniewski, Z.2
  • 31
    • 14244271537 scopus 로고    scopus 로고
    • Seabed characterisation using spectral moments of the echo signal
    • Tegowski J, Lubniewski Z (2002) Seabed characterisation using spectral moments of the echo signal. Acta Acustica United Acustica 88: 623-626.
    • (2002) Acta Acustica United Acustica , vol.88 , pp. 623-626
    • Tegowski, J.1    Lubniewski, Z.2
  • 32
    • 27744435322 scopus 로고    scopus 로고
    • Acoustic seafloor discrimination with echo shape parameters: a comparison with the ground truth
    • van Walree PA, Tegowski J, Laban C, Simons DG (2005) Acoustic seafloor discrimination with echo shape parameters: a comparison with the ground truth. Cont Shelf Res 25: 2273-2293.
    • (2005) Cont Shelf Res , vol.25 , pp. 2273-2293
    • van Walree, P.A.1    Tegowski, J.2    Laban, C.3    Simons, D.G.4
  • 33
    • 33745589366 scopus 로고
    • Sea-floor classification by neural hybrid system
    • Zerr B, Maillard E, Gueriot D (1994) Sea-floor classification by neural hybrid system. Proc IEEE Oceans '94, II: 239-243.
    • (1994) Proc IEEE Oceans '94 , vol.2 , pp. 239-243
    • Zerr, B.1    Maillard, E.2    Gueriot, D.3
  • 34
    • 22244453427 scopus 로고    scopus 로고
    • Seafloor classification of multibeam sonar data using neural network approach
    • Zhou X, Chen Y (2005) Seafloor classification of multibeam sonar data using neural network approach. Mar Geodesy 28: 201-206.
    • (2005) Mar Geodesy , vol.28 , pp. 201-206
    • Zhou, X.1    Chen, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.