-
1
-
-
0032562362
-
Bi-asymptotic fractals: Fractals between lower and upper bounds
-
Dollinger, J.W., Metzler, R. & Nonnenmacher, T.F. (1998) Bi-asymptotic fractals: Fractals between lower and upper bounds. J. Phys. A: Math. Gen. 31, 3839-3847.
-
(1998)
J. Phys. A: Math. Gen.
, vol.31
, pp. 3839-3847
-
-
Dollinger, J.W.1
Metzler, R.2
Nonnenmacher, T.F.3
-
2
-
-
70249136080
-
Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns
-
Dong, P. (2009) Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Comput. Geosci. 35, 2100-2110.
-
(2009)
Comput. Geosci.
, vol.35
, pp. 2100-2110
-
-
Dong, P.1
-
3
-
-
85169187659
-
Chaos and Fractals. New Frontiers of Science
-
ed. by, H.-O. Peitgen, H. Jürgens &, D. Saupe). Springer-Verlag, New York
-
Evertsz, C.J.G. & Mandelbrot, B.B. (1992) Multifractal measures (Appendix B). Chaos and Fractals. New Frontiers of Science (ed. by H.-O. Peitgen, H. Jürgens & D. Saupe). Springer-Verlag, New York.
-
(1992)
Multifractal measures (Appendix B)
-
-
Evertsz, C.J.G.1
Mandelbrot, B.B.2
-
4
-
-
0346372923
-
The infinite number of generalized dimensions of fractals and strange attractors
-
Hentschel, H.G.E. & Procaccia, I. (1983) The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435-444.
-
(1983)
Physica D
, vol.8
, pp. 435-444
-
-
Hentschel, H.G.E.1
Procaccia, I.2
-
5
-
-
0030766233
-
A method for estimating the dimension of asymptotic fractal sets
-
Landini, G. & Rigaut, J.P. (1997) A method for estimating the dimension of asymptotic fractal sets. Bioimaging 2, 65-70.
-
(1997)
Bioimaging
, vol.2
, pp. 65-70
-
-
Landini, G.1
Rigaut, J.P.2
-
6
-
-
0005820122
-
Fractal Geometry in Biological Systems: An Analytical Approach
-
(ed. by, P.M. Iannaccone &, M. Khokha) - CRC Press, Boca Raton
-
Landini, G. (1996) Applications of fractal geometry in pathology. Fractal Geometry in Biological Systems: An Analytical Approach (ed. by P.M. Iannaccone & M. Khokha), pp. 205-246. CRC Press, Boca Raton.
-
(1996)
Applications of fractal geometry in pathology
, pp. 205-246
-
-
Landini, G.1
-
7
-
-
0004263139
-
The Fractal Geometry of Nature
-
Freeman, San Francisco
-
Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. Freeman, San Francisco.
-
(1982)
-
-
Mandelbrot, B.B.1
-
8
-
-
0019479675
-
Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions
-
Paumgartner, D., Losa, G. & Weibel, E.R. (1981) Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions. J. Microsc. 121, 51-63.
-
(1981)
J. Microsc.
, vol.121
, pp. 51-63
-
-
Paumgartner, D.1
Losa, G.2
Weibel, E.R.3
-
9
-
-
0021368150
-
An empirical formulation relating boundary lengths to resolution in specimens showing 'non-ideally fractal' dimensions
-
Rigaut, J.P. (1984) An empirical formulation relating boundary lengths to resolution in specimens showing 'non-ideally fractal' dimensions. J. Microsc. 133, 41-54.
-
(1984)
J. Microsc.
, vol.133
, pp. 41-54
-
-
Rigaut, J.P.1
-
10
-
-
0031882615
-
Asymptotic fractals in the context of greyscale images
-
Rigaut, J.P., Schoëvaërt-Brossault, D., Downs, A.M. & Landini, G. (1998) Asymptotic fractals in the context of greyscale images. J. Microsc. 189, 57-63.
-
(1998)
J. Microsc.
, vol.189
, pp. 57-63
-
-
Rigaut, J.P.1
Schoëvaërt-Brossault, D.2
Downs, A.M.3
Landini, G.4
|