메뉴 건너뛰기




Volumn 241, Issue 1, 2011, Pages 1-8

Fractals in microscopy

Author keywords

Complexity; Fractal; Irregularity; Metrology; Morphology; Randomness; Resolution

Indexed keywords

RANDOM PROCESSES;

EID: 78650048787     PISSN: 00222720     EISSN: 13652818     Source Type: Journal    
DOI: 10.1111/j.1365-2818.2010.03454.x     Document Type: Article
Times cited : (65)

References (10)
  • 1
    • 0032562362 scopus 로고    scopus 로고
    • Bi-asymptotic fractals: Fractals between lower and upper bounds
    • Dollinger, J.W., Metzler, R. & Nonnenmacher, T.F. (1998) Bi-asymptotic fractals: Fractals between lower and upper bounds. J. Phys. A: Math. Gen. 31, 3839-3847.
    • (1998) J. Phys. A: Math. Gen. , vol.31 , pp. 3839-3847
    • Dollinger, J.W.1    Metzler, R.2    Nonnenmacher, T.F.3
  • 2
    • 70249136080 scopus 로고    scopus 로고
    • Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns
    • Dong, P. (2009) Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Comput. Geosci. 35, 2100-2110.
    • (2009) Comput. Geosci. , vol.35 , pp. 2100-2110
    • Dong, P.1
  • 3
    • 85169187659 scopus 로고
    • Chaos and Fractals. New Frontiers of Science
    • ed. by, H.-O. Peitgen, H. Jürgens &, D. Saupe). Springer-Verlag, New York
    • Evertsz, C.J.G. & Mandelbrot, B.B. (1992) Multifractal measures (Appendix B). Chaos and Fractals. New Frontiers of Science (ed. by H.-O. Peitgen, H. Jürgens & D. Saupe). Springer-Verlag, New York.
    • (1992) Multifractal measures (Appendix B)
    • Evertsz, C.J.G.1    Mandelbrot, B.B.2
  • 4
    • 0346372923 scopus 로고
    • The infinite number of generalized dimensions of fractals and strange attractors
    • Hentschel, H.G.E. & Procaccia, I. (1983) The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435-444.
    • (1983) Physica D , vol.8 , pp. 435-444
    • Hentschel, H.G.E.1    Procaccia, I.2
  • 5
    • 0030766233 scopus 로고    scopus 로고
    • A method for estimating the dimension of asymptotic fractal sets
    • Landini, G. & Rigaut, J.P. (1997) A method for estimating the dimension of asymptotic fractal sets. Bioimaging 2, 65-70.
    • (1997) Bioimaging , vol.2 , pp. 65-70
    • Landini, G.1    Rigaut, J.P.2
  • 6
    • 0005820122 scopus 로고    scopus 로고
    • Fractal Geometry in Biological Systems: An Analytical Approach
    • (ed. by, P.M. Iannaccone &, M. Khokha) - CRC Press, Boca Raton
    • Landini, G. (1996) Applications of fractal geometry in pathology. Fractal Geometry in Biological Systems: An Analytical Approach (ed. by P.M. Iannaccone & M. Khokha), pp. 205-246. CRC Press, Boca Raton.
    • (1996) Applications of fractal geometry in pathology , pp. 205-246
    • Landini, G.1
  • 7
    • 0004263139 scopus 로고
    • The Fractal Geometry of Nature
    • Freeman, San Francisco
    • Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. Freeman, San Francisco.
    • (1982)
    • Mandelbrot, B.B.1
  • 8
    • 0019479675 scopus 로고
    • Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions
    • Paumgartner, D., Losa, G. & Weibel, E.R. (1981) Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions. J. Microsc. 121, 51-63.
    • (1981) J. Microsc. , vol.121 , pp. 51-63
    • Paumgartner, D.1    Losa, G.2    Weibel, E.R.3
  • 9
    • 0021368150 scopus 로고
    • An empirical formulation relating boundary lengths to resolution in specimens showing 'non-ideally fractal' dimensions
    • Rigaut, J.P. (1984) An empirical formulation relating boundary lengths to resolution in specimens showing 'non-ideally fractal' dimensions. J. Microsc. 133, 41-54.
    • (1984) J. Microsc. , vol.133 , pp. 41-54
    • Rigaut, J.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.