메뉴 건너뛰기




Volumn 1, Issue , 2006, Pages 19-24

A novel plausible model for visual perception

Author keywords

Bayesian network; Visual perception

Indexed keywords

BAYESIAN FRAMEWORKS; HIGH LEVEL SEMANTICS; LOW LEVEL; METICULOUS ANALYSIS; NEW MODEL; OBJECT DETECTION; PLAUSIBLE MODEL; SCENE ANALYSIS; TARGET OBJECT; THEORETICAL FOUNDATIONS; VISUAL FEATURE; VISUAL PERCEPTION;

EID: 78650036812     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/COGINF.2006.365671     Document Type: Conference Paper
Times cited : (1)

References (26)
  • 1
    • 0002460150 scopus 로고
    • The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
    • Springer-Verlag, Berlin
    • Beinlich, I., Suermondt, G., Chavez, R. and Cooper, G., "The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks", Proc. 2'nd European Conf. on AI and Medicine, 38, pp. 247-256, Springer-Verlag, Berlin, 1989.
    • (1989) Proc. 2'nd European Conf. on AI and Medicine , vol.38 , pp. 247-256
    • Beinlich, I.1    Suermondt, G.2    Chavez, R.3    Cooper, G.4
  • 3
    • 29344455317 scopus 로고    scopus 로고
    • A comparison of novel and state-of-the-art polynomial Bayesian network learning algorithms
    • Brown, L.E., Tsamardinos, I. and Aliferis, C.F., "A Comparison of Novel and State-of-the-Art Polynomial Bayesian Network Learning Algorithms", AAAI 2005, pp. 739-745, 2005
    • (2005) AAAI 2005 , pp. 739-745
    • Brown, L.E.1    Tsamardinos, I.2    Aliferis, C.F.3
  • 6
    • 0027560587 scopus 로고    scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is np-hard
    • Dagum, P. and Luby, M., "Approximating probabilistic inference in bayesian belief networks is np-hard", Artificial Intelligence. 60, pp. 141-153. 1993
    • Artificial Intelligence , vol.60 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 7
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • San Francisco, CA, USA
    • Friedman, N., "Learning Belief Networks in the Presence of Missing Values and Hidden Variables", Proceedings of the Fourteenth International Conference on Machine Learning, San Francisco, CA, USA, pp. 125-133, 1997.
    • (1997) Proceedings of the Fourteenth International Conference on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 9
    • 0037902615 scopus 로고    scopus 로고
    • A Bayesian approach to the evolution of perceptual and cognitive systems
    • Geisler, W. and Diehl, R. L., "A Bayesian approach to the evolution of perceptual and cognitive systems" Cognitive Science, 27, pp. 379-402, 2003.
    • (2003) Cognitive Science , vol.27 , pp. 379-402
    • Geisler, W.1    Diehl, R.L.2
  • 10
    • 0037775765 scopus 로고    scopus 로고
    • Practice doesn't make perfect
    • Geisler, W. and Murray, R., "Practice doesn't make perfect", Nature, 423, pp. 696-697, 2003
    • (2003) Nature , vol.423 , pp. 696-697
    • Geisler, W.1    Murray, R.2
  • 11
    • 0036681580 scopus 로고    scopus 로고
    • What determines visual cue reliability?
    • August
    • Jacobs, R.A., "What determines visual cue reliability?" TRENDS in Cognitive Sciences, Vol.6, No.8, August, pp. 345-350, 2002.
    • (2002) TRENDS in Cognitive Sciences , vol.6 , Issue.8 , pp. 345-350
    • Jacobs, R.A.1
  • 17
    • 1642300469 scopus 로고    scopus 로고
    • Isomorphism in gestalt theory: Comparison of wertheimer's and kohler's concepts
    • Nov.
    • Luchins, A.S. and Luchins, E.H., "Isomorphism in Gestalt Theory: Comparison of Wertheimer's and Kohler's Concepts", GESTALT THEORY, Vol. 21, No 3, pp. 208-234, Nov. 1999.
    • (1999) Gestalt Theory , vol.21 , Issue.3 , pp. 208-234
    • Luchins, A.S.1    Luchins, E.H.2
  • 18
    • 84860603224 scopus 로고    scopus 로고
    • Using the forest to see the trees: A graphical model relating features, objects, and scenes
    • (NIPS), Vancouver, BC, MIT Press
    • Murphy, K., Torralba, A. and Freeman, W.T., "Using the forest to see the trees: a graphical model relating features, objects, and scenes", Advances in Neural Information Processing Systems 16 (NIPS), Vancouver, BC, MIT Press, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Murphy, K.1    Torralba, A.2    Freeman, W.T.3
  • 19
    • 0034206769 scopus 로고    scopus 로고
    • A trainable system for object detection
    • Papageorgiou, C. and Poggio, T., "A trainable system for object detection", Intl. J. Computer Vision, 38(1), pp. 15-33, 2000.
    • (2000) Intl. J. Computer Vision , vol.38 , Issue.1 , pp. 15-33
    • Papageorgiou, C.1    Poggio, T.2
  • 21
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • Ramoni, M. and Sebastiani, P., "Robust learning with missing data", Machine Learning, 45(2), pp. 147-170, 2001.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 24
    • 26444605180 scopus 로고    scopus 로고
    • Bayesian object matching with hierarchical priors and Markov chain Monte Carlo
    • Oxford University Press
    • Tamminen, T. and Lampinen, J., "Bayesian object matching with hierarchical priors and Markov chain Monte Carlo", Bayesian Statistics 7. Oxford University Press, 2003.
    • (2003) Bayesian Statistics , vol.7
    • Tamminen, T.1    Lampinen, J.2
  • 25
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time object detection
    • Viola, P. and Jones, M., "Robust real-time object detection", Intl. J. Computer Vision, 57(2), pp. 137-154, 2004.
    • (2004) Intl. J. Computer Vision , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.