메뉴 건너뛰기




Volumn 73, Issue 3-4, 2010, Pages 227-232

A new approach to improve neural networks' algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN)

Author keywords

Committee machine; Neural network; Permeability prediction; Petroleum reservoir; SCMNN

Indexed keywords

COMMITTEE MACHINES; CORRELATION COEFFICIENT; CRITICAL PARAMETER; HIGH CLASS; HIGH PERMEABILITY; HIGH-POWER; HYDROCARBON RESERVOIR; INPUT DATAS; NEW APPROACHES; PERMEABILITY PREDICTION; RESERVOIR PERMEABILITY; SCMNN; SIMPLE NETWORKS; STATISTICAL STUDY; TESTING DATA; TRAINING DATA; WELL LOG DATA;

EID: 78649976856     PISSN: 09204105     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.petrol.2010.07.003     Document Type: Article
Times cited : (92)

References (14)
  • 1
    • 0026153786 scopus 로고
    • Permeability estimation: the various sources and their interrelationships
    • Ahmed U., Crary S.F., Coats G.R. Permeability estimation: the various sources and their interrelationships. J. Petrol. Technol. 1991, 578-587.
    • (1991) J. Petrol. Technol. , pp. 578-587
    • Ahmed, U.1    Crary, S.F.2    Coats, G.R.3
  • 2
    • 33947280749 scopus 로고    scopus 로고
    • Application of committee machines in reservoir characterization while drilling: a novel neural network approach in log analysis
    • Trondheim, Norway
    • Bhatt A., Helle H.B., Ursin B. Application of committee machines in reservoir characterization while drilling: a novel neural network approach in log analysis. Proceeding of the 6th Nordic Symposium on Petrophysics 2001, Trondheim, Norway.
    • (2001) Proceeding of the 6th Nordic Symposium on Petrophysics
    • Bhatt, A.1    Helle, H.B.2    Ursin, B.3
  • 4
    • 33644883318 scopus 로고    scopus 로고
    • A committee machine with empirical formulas for permeability prediction
    • Chen Ch., Lin Z. A committee machine with empirical formulas for permeability prediction. Comput. Geosci. 2006, 32:485-496.
    • (2006) Comput. Geosci. , vol.32 , pp. 485-496
    • Chen, C.1    Lin, Z.2
  • 6
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M. Training feed forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5(6):989-993.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 8
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Horink K., Stinchcombe M., White H. Multilayer feed forward networks are universal approximators. Neural Netw. 1989, 3:359-366.
    • (1989) Neural Netw. , vol.3 , pp. 359-366
    • Horink, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 67349146347 scopus 로고    scopus 로고
    • Comparison between neuro-fuzzy and fractal models for permeability prediction
    • ORIGINAL PAPER
    • Hurtado N., Aldana M., Torres J. Comparison between neuro-fuzzy and fractal models for permeability prediction. Compute Geosci. 2008, ORIGINAL PAPER.
    • (2008) Compute Geosci.
    • Hurtado, N.1    Aldana, M.2    Torres, J.3
  • 11
    • 0030415277 scopus 로고    scopus 로고
    • Petroleum reservoir characterization with the aid of artificial neural networks
    • Mohaghegh S., Arefi R., Ameri S. Petroleum reservoir characterization with the aid of artificial neural networks. J. Petrol. Sci. Eng. 1996, 16:263-274.
    • (1996) J. Petrol. Sci. Eng. , vol.16 , pp. 263-274
    • Mohaghegh, S.1    Arefi, R.2    Ameri, S.3
  • 13
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • Sharkey A.J.C. On combining artificial neural nets. Connection Sci. 1996, 8:299-314.
    • (1996) Connection Sci. , vol.8 , pp. 299-314
    • Sharkey, A.J.C.1
  • 14
    • 0033839114 scopus 로고    scopus 로고
    • Multiple permeability predictions using an observational learning algorithm
    • Wong P.M., Jang M., Cho S., Gedeon T.D. Multiple permeability predictions using an observational learning algorithm. Comput. Geosci. 2000, 26(8):907-913.
    • (2000) Comput. Geosci. , vol.26 , Issue.8 , pp. 907-913
    • Wong, P.M.1    Jang, M.2    Cho, S.3    Gedeon, T.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.