메뉴 건너뛰기




Volumn , Issue , 2010, Pages 645-650

Regularized orthogonal forward feature selection for spectral data

Author keywords

Feature selection; Orthogonal forward selection; Regularization; Spectra data

Indexed keywords

DIRECT OPTIMIZATION; FEATURE SELECTION; FEATURE SELECTION METHODS; FEATURE SUBSET; GENERALIZATION CAPABILITY; LEAVE-ONE-OUT; MODEL GENERALIZATION; ORTHOGONAL FORWARD SELECTIONS; PREDICTIVE ABILITIES; REAL DATA SETS; REGULARIZATION; REGULARIZATION METHODS; SELECTION PROCEDURES; SPECTRA DATA; SPECTRAL DATA; TEST ERRORS;

EID: 78649888120     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/COGINF.2010.5599829     Document Type: Conference Paper
Times cited : (1)

References (9)
  • 2
    • 0035965476 scopus 로고    scopus 로고
    • PLS-regression: A basic tool of chemometrics
    • S. Wold, M. sjöström, and L. Eriksson, "PLS-regression: a basic tool of chemometrics," Chemom.Intell.Lab.Syst, vol 58, pp. 109-130, 2001.
    • (2001) Chemom.Intell.Lab.Syst , vol.58 , pp. 109-130
    • Wold, S.1    Sjöström, M.2    Eriksson, L.3
  • 3
    • 0033647286 scopus 로고    scopus 로고
    • Application of genetic algorithm - PLS for feature selection in spectra data sets
    • R. Leardi, "Application of genetic algorithm - PLS for feature selection in spectra data sets," J. Chemometrics, vol 14, pp. 643-655, 2000.
    • (2000) J. Chemometrics , vol.14 , pp. 643-655
    • Leardi, R.1
  • 4
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal forward regression with press statistic and regularization
    • S. Chen, X. Hong, C.J. Harris, and P.M. Sharkey, "Sparse modeling using orthogonal forward regression with press statistic and regularization," IEEE Trans. Systems, Man and Cybernetics-part B, vol 34, pp. 1708-1717, 2004.
    • (2004) IEEE Trans. Systems, Man and Cybernetics-part B , vol.34 , pp. 1708-1717
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 5
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design
    • S. Chen, X. Hong and C.J. Harris, "Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design," IEEE Trans. Automatic control, vol 48, pp. 1029-1036, 2003.
    • (2003) IEEE Trans. Automatic Control , vol.48 , pp. 1029-1036
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 6
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D.J.C MacKay, "Bayesian interpolation," Neural Computat, vol 2, pp. 302-309, 1992.
    • (1992) Neural Computat , vol.2 , pp. 302-309
    • MacKay, D.J.C.1
  • 7
    • 0037861058 scopus 로고    scopus 로고
    • Automatic nonlinear predictive model-construction algorithm using forward regression and the PRESS statistic
    • X. Hong, P.M. Sharkey and K. Warwick, "Automatic nonlinear predictive model-construction algorithm using forward regression and the PRESS statistic," IEE Proc. Control Theory and Applications, vol 150, pp. 245-254, 2003.
    • (2003) IEE Proc. Control Theory and Applications , vol.150 , pp. 245-254
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 8
    • 0013370796 scopus 로고    scopus 로고
    • Local overfitting control via leverages
    • G. Monari and G. Dreyfus, "Local overfitting control via leverages," Neural Computa, vol 14, pp. 1481-1506, 2002.
    • (2002) Neural Computa , vol.14 , pp. 1481-1506
    • Monari, G.1    Dreyfus, G.2
  • 9
    • 0003368229 scopus 로고    scopus 로고
    • A comparative evaluation of sequential feature selection algorithms
    • D.W. Aha and R.L. Bankert, "A comparative evaluation of sequential feature selection algorithms," Learning from Data: AI and statistics V, pp. 199-206, 1996.
    • (1996) Learning from Data: AI and Statistics , vol.5 , pp. 199-206
    • Aha, D.W.1    Bankert, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.