메뉴 건너뛰기




Volumn , Issue , 2010, Pages 477-483

A semiautonomous clustering algorithm based on decision-theoretic rough set theory

Author keywords

Autonomous; Clustering; Decision theoretic rough set model; Knowledge oriented clustering; Rough set theory

Indexed keywords

AUTONOMOUS; CLUSTERING; KNOWLEDGE-ORIENTED; ROUGH SET; ROUGH SET MODELS;

EID: 78649824733     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/COGINF.2010.5599691     Document Type: Conference Paper
Times cited : (3)

References (21)
  • 1
    • 0142025113 scopus 로고    scopus 로고
    • An adaptive rough fuzzy single pass algorithm for clustering large data sets
    • S. Asharaf and M. N. Murty, An adaptive rough fuzzy single pass algorithm for clustering large data sets. Pattern Recognition. 3015- 3018,(36), 2003.
    • (2003) Pattern Recognition , Issue.36 , pp. 3015-3018
    • Asharaf, S.1    Murty, M.N.2
  • 2
    • 70350731987 scopus 로고    scopus 로고
    • Knowledge-based clustering: A semi-autonomous algorithm using local and global data properties.
    • C. Bean and C. Kambhampati, Knowledge-Based Clustering: A Semi- Autonomous Algorithm Using Local and Global Data Properties. IEEE International Joint Conference on Neural Networks. 95-100,11(3), 2004.
    • (2004) IEEE International Joint Conference on Neural Networks , vol.11 , Issue.3 , pp. 95-100
    • Bean, C.1    Kambhampati, C.2
  • 4
    • 44649184115 scopus 로고    scopus 로고
    • A unifying abstract approach for rough models
    • Proceedings of the Third International Conference on Rough Sets and Knowledge Technology (RSKT'08)
    • D. Ciucci, A Unifying Abstract Approach for Rough Models. Proceedings of the Third International Conference on Rough Sets and Knowledge Technology (RSKT'08), LNAI 5009, pp. 371-378, 2008.
    • (2008) LNAI , vol.5009 , pp. 371-378
    • Ciucci, D.1
  • 5
    • 69049114083 scopus 로고    scopus 로고
    • Learning optimal parameters in decision-theoretic rough sets
    • Proceedings of Rough Sets and Knowledge Technology (RSKT'09) ,Gold Coast, Australia.July 14-16
    • J. P. Herbert and J. T. Yao, Learning Optimal Parameters in Decision- Theoretic Rough Sets. Proceedings of Rough Sets and Knowledge Technology (RSKT'09), LNAI 5589,Gold Coast, Australia, pp.610- 617.July 14-16, 2009.
    • (2009) LNAI , vol.5589 , pp. 610-617
    • Herbert, J.P.1    Yao, J.T.2
  • 7
    • 78649885135 scopus 로고    scopus 로고
    • Determination and interpretation of the threshold value in (alpha, beta)-rough set model
    • X. H. Li and D. S. Zhang,Determination and interpretation of the threshold value in (alpha, beta)-rough set model. Journal of Shandong University(Engineering Science)(In Chinese), pp.81-85,36(2), 2006.
    • (2006) Journal of Shandong University(Engineering Science)(In Chinese) , vol.36 , Issue.2 , pp. 81-85
    • Li, X.H.1    Zhang, D.S.2
  • 8
    • 0034292690 scopus 로고    scopus 로고
    • An information filtering model on the Web and its application in JobAgent
    • Y. Li, C. Zhang, and J. R. Swanb,An information filtering model on the Web and its application in JobAgent. Knowledge-Based Systems. 285-296,13, 2000.
    • (2000) Knowledge-Based Systems , vol.13 , pp. 285-296
    • Li, Y.1    Zhang, C.2    Swanb, J.R.3
  • 9
    • 3042789571 scopus 로고    scopus 로고
    • Interval set c1ustering of web users with rough k-means
    • P. Lingras, Interval set c1ustering of web users with rough k-means. Journal of Intelligent Information System. 5-16, 23(1), 2004.
    • (2004) Journal of Intelligent Information System , vol.23 , Issue.1 , pp. 5-16
    • Lingras, P.1
  • 13
    • 33847730539 scopus 로고    scopus 로고
    • Rough set based ensemble classifier for web page classification
    • S. Saha, C. A. Murthy and S. K. Pal, Rough Set Based Ensemble Classifier for Web Page Classification. Fundamenta Informaticae. vol. 76, Issue 1-2, 171-187, 2007.
    • (2007) Fundamenta Informaticae , vol.76 , Issue.1-2 , pp. 171-187
    • Saha, S.1    Murthy, C.A.2    Pal, S.K.3
  • 14
    • 42149177267 scopus 로고    scopus 로고
    • Hierarchical adaptive clustering
    • G. Serban and A. Câmpan, Hierarchical Adaptive Clustering. Informatica. 101-112,19(1), 2008.
    • (2008) Informatica , vol.19 , Issue.1 , pp. 101-112
    • Serban, G.1    Câmpan, A.2
  • 16
    • 56849111739 scopus 로고    scopus 로고
    • A novel possibilistic fuzzy c-means clustering
    • X. Wu and J. Zhou, A novel possibilistic fuzzy c-means clustering. ACTA Electronica Sinica 10, 1996-2000, 2008.
    • (2008) ACTA Electronica Sinica , vol.10 , pp. 1996-2000
    • Wu, X.1    Zhou, J.2
  • 17
    • 0002608174 scopus 로고
    • A decision-theoretic framework for approximating concepts[J]
    • Y. Y. Yao and S. K. M.Wong, A decision-theoretic framework for approximating concepts[J]International Journal of Man-machine Studies, 793-809,37(6), 1992.
    • (1992) International Journal of Man-machine Studies , vol.37 , Issue.6 , pp. 793-809
    • Yao, Y.Y.1    Wong, S.K.M.2
  • 18
    • 37249027269 scopus 로고    scopus 로고
    • Decision-theoretic rough set models
    • Y. Y. Yao, Decision-Theoretic Rough Set Models. Lecture Notes in Computer Science. vol. 4481 ,1-12, 2007.
    • (2007) Lecture Notes in Computer Science , vol.4481 , pp. 1-12
    • Yao, Y.Y.1
  • 19
    • 76649122544 scopus 로고    scopus 로고
    • A novel possibilistic fuzzy leader clustering algorithm
    • H. Sakai et al. (Eds.) : RSFDGrC 2009
    • H. Yu and H. Luo, A Novel Possibilistic Fuzzy Leader Clustering Algorithm. H. Sakai et al. (Eds.): RSFDGrC 2009. LNAI 5908, 423- 430, 2009.
    • (2009) LNAI , vol.5908 , pp. 423-430
    • Yu, H.1    Luo, H.2
  • 21
    • 69249217325 scopus 로고    scopus 로고
    • Information filter ing model based on decision-theoretic rough set theory
    • W. Q. Zhao, Y. L. Zhu, and W. Gao, Information filter ing model based on decision-theoretic rough set theory. Computer Engineering and Applications(In Chinese), pp. 185-187,43(7), 2007
    • (2007) Computer Engineering and Applications , vol.43 , Issue.7 , pp. 185-187
    • Zhao, W.Q.1    Zhu, Y.L.2    Gao, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.