-
3
-
-
2942519065
-
-
TU Wien, R package version 1.5-19
-
E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel. e1071: Misc functions of the department of statistics (e1071), TU Wien, 2009. R package version 1.5-19.
-
(2009)
E1071: Misc Functions of the Department of Statistics (E1071)
-
-
Dimitriadou, E.1
Hornik, K.2
Leisch, F.3
Meyer, D.4
Weingessel, A.5
-
6
-
-
0035394038
-
The confounding effect of class size on the validity of object-oriented metrics
-
K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The confounding effect of class size on the validity of object-oriented metrics. IEEE Transactions on Software Engineering, 27(7):630-650, 2001.
-
(2001)
IEEE Transactions on Software Engineering
, vol.27
, Issue.7
, pp. 630-650
-
-
Emam, K.E.1
Benlarbi, S.2
Goel, N.3
Rai, S.N.4
-
7
-
-
77953776983
-
How to build repeatable experiments
-
New York, NY, USA, ACM
-
G. Gay, T. Menzies, B. Cukic, and B. Turhan. How to build repeatable experiments. In PROMISE '09: Proceedings of the 5th International Conference on Predictor Models in Software Engineering, pages 1-9, New York, NY, USA, 2009. ACM.
-
(2009)
PROMISE '09: Proceedings of the 5th International Conference on Predictor Models in Software Engineering
, pp. 1-9
-
-
Gay, G.1
Menzies, T.2
Cukic, B.3
Turhan, B.4
-
8
-
-
77949906737
-
Predicting faults using the complexity of code changes
-
Washington, DC, USA, IEEE Computer Society
-
A. E. Hassan. Predicting faults using the complexity of code changes. In International Conference on Software Engineering, pages 78-88, Washington, DC, USA, 2009. IEEE Computer Society.
-
(2009)
International Conference on Software Engineering
, pp. 78-88
-
-
Hassan, A.E.1
-
9
-
-
52549091028
-
Techniques for evaluating fault prediction models
-
Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating fault prediction models. Empirical Software Engineering, 13(5):561-595, 2008.
-
(2008)
Empirical Software Engineering
, vol.13
, Issue.5
, pp. 561-595
-
-
Jiang, Y.1
Cukic, B.2
Ma, Y.3
-
10
-
-
77953739200
-
Why comparative effort prediction studies may be invalid
-
New York, NY, USA, ACM
-
B. Kitchenham and E. Mendes. Why comparative effort prediction studies may be invalid. In PROMISE '09: Proceedings of the 5th International Conference on Predictor Models in Software Engineering, pages 1-5, New York, NY, USA, 2009. ACM.
-
(2009)
PROMISE '09: Proceedings of the 5th International Conference on Predictor Models in Software Engineering
, pp. 1-5
-
-
Kitchenham, B.1
Mendes, E.2
-
11
-
-
52549084296
-
Theory of relative defect proneness
-
A. G. Koru, K. E. Emam, D. Zhang, H. Liu, and D. Mathew. Theory of relative defect proneness. Empirical Software Engineering, 13(5):473-498, 2008.
-
(2008)
Empirical Software Engineering
, vol.13
, Issue.5
, pp. 473-498
-
-
Koru, A.G.1
Emam, K.E.2
Zhang, D.3
Liu, H.4
Mathew, D.5
-
12
-
-
49349089233
-
Benchmarking classiffcation models for software defect prediction: A proposed framework and novel findings
-
S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classiffcation models for software defect prediction: A proposed framework and novel findings. IEEE Transactions on Software Engineering, 34(4):485-496, 2008.
-
(2008)
IEEE Transactions on Software Engineering
, vol.34
, Issue.4
, pp. 485-496
-
-
Lessmann, S.1
Baesens, B.2
Mues, C.3
Pietsch, S.4
-
13
-
-
77953762806
-
Revisiting the evaluation of defect prediction models
-
New York, NY, USA
-
T. Mende and R. Koschke. Revisiting the evaluation of defect prediction models. In PROMISE '09: Proceedings of the 5th International Conference on Predictor Models in Software Engineering, pages 1-10, New York, NY, USA, 2009.
-
(2009)
PROMISE '09: Proceedings of the 5th International Conference on Predictor Models in Software Engineering
, pp. 1-10
-
-
Mende, T.1
Koschke, R.2
-
15
-
-
34548245485
-
Problems with precision: A response to comments on 'data mining static code attributes to learn defect predictors'
-
T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald. Problems with precision: A response to "comments on 'data mining static code attributes to learn defect predictors'". IEEE Transactions on Software Engineering, 33(9):637-640, 2007.
-
(2007)
IEEE Transactions on Software Engineering
, vol.33
, Issue.9
, pp. 637-640
-
-
Menzies, T.1
Dekhtyar, A.2
Distefano, J.3
Greenwald, J.4
-
16
-
-
33845782503
-
Data mining static code attributes to learn defect predictors
-
T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2-13, 2007.
-
(2007)
IEEE Transactions on Software Engineering
, vol.33
, Issue.1
, pp. 2-13
-
-
Menzies, T.1
Greenwald, J.2
Frank, A.3
-
17
-
-
77956972220
-
Defect prediction from static code features: Current results, limitations, new approaches
-
T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect prediction from static code features: current results, limitations, new approaches. Automated Software Engineering, 2010.
-
(2010)
Automated Software Engineering
-
-
Menzies, T.1
Milton, Z.2
Turhan, B.3
Cukic, B.4
Jiang, Y.5
Bener, A.6
-
19
-
-
33646161505
-
Predicting fault-prone software modules in telephone switches
-
N. Ohlsson and H. Alberg. Predicting fault-prone software modules in telephone switches. IEEE Transactions on Software Engineering, 22(12):886-894, 1996.
-
(1996)
IEEE Transactions on Software Engineering
, vol.22
, Issue.12
, pp. 886-894
-
-
Ohlsson, N.1
Alberg, H.2
-
20
-
-
22944473604
-
Predicting the location and number of faults in large software systems
-
T. Ostrand, E. Weyuker, and R. Bell. Predicting the location and number of faults in large software systems. IEEE Transactions on Software Engineering, 31(4):340-355, 2005.
-
(2005)
IEEE Transactions on Software Engineering
, vol.31
, Issue.4
, pp. 340-355
-
-
Ostrand, T.1
Weyuker, E.2
Bell, R.3
-
22
-
-
27544491192
-
ROCR: Visualizing classiffer performance in R
-
T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: visualizing classiffer performance in R. Bioinformatics, 21(20):3940-3941, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.20
, pp. 3940-3941
-
-
Sing, T.1
Sander, O.2
Beerenwinkel, N.3
Lengauer, T.4
-
23
-
-
77953772736
-
Validation of network measures as indicators of defective modules in software systems
-
New York, NY, USA, ACM
-
A. Tosun, B. Turhan, and A. Bener. Validation of network measures as indicators of defective modules in software systems. In PROMISE '09: Proceedings of the 5th International Conference on Predictor Models in Software Engineering, pages 1-9, New York, NY, USA, 2009. ACM.
-
(2009)
PROMISE '09: Proceedings of the 5th International Conference on Predictor Models in Software Engineering
, pp. 1-9
-
-
Tosun, A.1
Turhan, B.2
Bener, A.3
-
24
-
-
34548253429
-
Comments on "data mining static code attributes to learn defect predictors"
-
H. Zhang and X. Zhang. Comments on "data mining static code attributes to learn defect predictors". IEEE Transactions on Software Engineering, 33(9):635-637, 2007.
-
(2007)
IEEE Transactions on Software Engineering
, vol.33
, Issue.9
, pp. 635-637
-
-
Zhang, H.1
Zhang, X.2
-
25
-
-
57349095431
-
Predicting defects using network analysis on dependency graphs
-
New York, NY, USA, ACM
-
T. Zimmermann and N. Nagappan. Predicting defects using network analysis on dependency graphs. In International Conference on Software Engineering, pages 531-540, New York, NY, USA, 2008. ACM.
-
(2008)
International Conference on Software Engineering
, pp. 531-540
-
-
Zimmermann, T.1
Nagappan, N.2
|