메뉴 건너뛰기




Volumn 4, Issue , 2009, Pages 429-433

Machine learning in electrocardiogram diagnosis

Author keywords

Classification; Electrocardiogram; Heart disease; Machine learning

Indexed keywords

ARTERIAL DISEASE; ATRIAL FIBRILLATION; CARDIO-VASCULAR DISEASE; CLASSIFICATION; CLASSIFICATION ACCURACY; CLINICAL TOOLS; ECG MONITORING; ELECTRICAL ACTIVITY OF THE HEART; ELECTROCARDIOGRAM; FEATURE SPACE; HEART DISEASE; HEART FUNCTION; MACHINE LEARNING TECHNIQUES; MACHINE-LEARNING; MODERN SIGNAL PROCESSING;

EID: 78649757623     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IMCSIT.2009.5352689     Document Type: Conference Paper
Times cited : (26)

References (41)
  • 1
    • 78649730007 scopus 로고    scopus 로고
    • accessed 1/2/2009
    • http://www.americanheart.org/presenter.jhtml?identifier=4478: accessed 1/2/2009.
  • 4
    • 36549070691 scopus 로고    scopus 로고
    • Computer aided diagnosis of ECG data on the least square support vector machine
    • K. Polat, B. Akdemir, S. Gune; Computer aided diagnosis of ECG data on the least square support vector machine; Digital Signal Processing 18 (2008) 25-32.
    • (2008) Digital Signal Processing , vol.18 , pp. 25-32
    • Polat, K.1    Akdemir, B.2    Gune, S.3
  • 5
    • 33947248058 scopus 로고    scopus 로고
    • Detection of ECG arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine
    • K. Polat, S. Gunes; Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine; Applied Mathematics and Computation 186 (2007) 898-906.
    • (2007) Applied Mathematics and Computation , vol.186 , pp. 898-906
    • Polat, K.1    Gunes, S.2
  • 6
    • 33644765907 scopus 로고    scopus 로고
    • A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems
    • N. Acir; A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems; Expert Systems with Applications 31 (2006) 150-158.
    • (2006) Expert Systems with Applications , vol.31 , pp. 150-158
    • Acir, N.1
  • 7
    • 27744453578 scopus 로고    scopus 로고
    • Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm
    • N. Acir; Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm; Neural Comput & Applic 14 (2005), 299-309.
    • (2005) Neural Comput & Applic. , vol.14 , pp. 299-309
    • Acir, N.1
  • 8
    • 77950999404 scopus 로고    scopus 로고
    • Member, IAENG; Support vector machine for cardiac beat detection in single lead electrocardiogram
    • S. S. Mehta, and N. S. Lingayat, Member, IAENG; Support vector machine for cardiac beat detection in single lead electrocardiogram; IAENG International journal of AppliedMathematics, 36 (2007), 2-8.
    • (2007) IAENG International Journal of AppliedMathematics , vol.36 , pp. 2-8
    • Mehta, S.S.1    Lingayat, N.S.2
  • 9
    • 61349139381 scopus 로고    scopus 로고
    • SVM-based algorithm for recognition of QRS complexes in electrocardiogram
    • S. S. Mehta, N.S. Lingayat; SVM-based algorithm for recognition of QRS complexes in electrocardiogram; IRBM 29 (2008), 310-317.
    • (2008) IRBM , vol.29 , pp. 310-317
    • Mehta, S.S.1    Lingayat, N.S.2
  • 10
    • 34047269242 scopus 로고    scopus 로고
    • ECG beats classification using multi-class support vector machines with error correcting output codes
    • E. Derya Ubeyli; ECG beats classification using multi-class support vector machines with error correcting output codes; Digital Signal Processing 17 (2007), 675-684.
    • (2007) Digital Signal Processing , vol.17 , pp. 675-684
    • Ubeyli, E.D.1
  • 11
    • 54049114256 scopus 로고    scopus 로고
    • Support vector machines for detection of electrocardiographic changes in partial epileptic patients
    • E. Derya Ubeyli; Support vector machines for detection of electrocardiographic changes in partial epileptic patients; Engineering Applications of Artificial Intelligence 21(2008), 1196-1203.
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , pp. 1196-1203
    • Ubeyli, E.D.1
  • 12
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • B. Mohammadzadeh, S. Kamaledin, Setarehdan, Maryam, Mohebbi; Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal; Artificial Intelligence in Medicine, 44, 1 (2008), 51-64.
    • (2008) Artificial Intelligence in Medicine , vol.44 , Issue.1 , pp. 51-64
    • Mohammadzadeh, B.1    Kamaledin, S.2    Setarehdan3    Maryam4    Mohebbi5
  • 14
    • 78649744504 scopus 로고    scopus 로고
    • Clinical diagnosis of cardiac disease based on support vector machine
    • L. Chengwei, Wang Shoubin, Xu Aijun and Peng Hui; Clinical diagnosis of cardiac disease based on support vector machine; IFMBE Proceedings; 14/2, (2007), 1273-1276.
    • (2007) IFMBE Proceedings , vol.14 , Issue.2 , pp. 1273-1276
    • Chengwei, L.1    Shoubin, W.2    Aijun, X.3    Hui, P.4
  • 17
    • 0037209480 scopus 로고    scopus 로고
    • Classification of heart rate data using artificial neural network and fuzzy equivalence relation
    • U. R. Acharya, P. S. Bhat, S. S. Iyengar, A. Rao, S. Dua; Classification of heart rate data using artificial neural network and fuzzy equivalence relation; Pattern Recognition 36 (2003) 61 -68.
    • (2003) Pattern Recognition , vol.36 , pp. 61-68
    • Acharya, U.R.1    Bhat, P.S.2    Iyengar, S.S.3    Rao, A.4    Dua, S.5
  • 19
    • 58549090877 scopus 로고    scopus 로고
    • Combining recurrent neural networks with eigenvector methods for classification of ECG beats
    • E. Derya Ubyli; Combining recurrent neural networks with eigenvector methods for classification of ECG beats; Digital Signal Processing; 19, 2(2009), 320-329.
    • (2009) Digital Signal Processing , vol.19 , Issue.2 , pp. 320-329
    • Ubyli, E.D.1
  • 20
    • 6444240833 scopus 로고    scopus 로고
    • ECG beat classifier designed by combined neural network model
    • I. Güler and E. Derya-beyl'I; ECG beat classifier designed by combined neural network model; PatternRecognition, 38, 2, ( 2005), 199-208.
    • (2005) PatternRecognition , vol.38 , Issue.2 , pp. 199-208
    • Güler, I.1    Derya-Beyl, I.E.2
  • 21
    • 34248190653 scopus 로고    scopus 로고
    • Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network
    • S.-N. Yu, Y-H. Chen; Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network; Pattern RecognitionLetters 28 (2007) 1142-1150.
    • (2007) Pattern RecognitionLetters , vol.28 , pp. 1142-1150
    • Yu, S.-N.1    Chen, Y.-H.2
  • 22
    • 78649748043 scopus 로고    scopus 로고
    • Neuronal classification of atria fibrillation
    • M. Ben Messaoud; Neuronal Classification of Atria Fibrillation; Leonardo Journal of Sciences 12, (2008) 196-213.
    • (2008) Leonardo Journal of Sciences , vol.12 , pp. 196-213
    • Messaoud, M.B.1
  • 23
    • 78649735367 scopus 로고    scopus 로고
    • On the analysis of a compound neural network for detecting atrio-ventricular heart block (AVB) in an ECG signal
    • S. Meghriche, A. Draa, and M. Boulemden; On the analysis of a compound neural network for detecting atrio-ventricular heart block (AVB) in an ECG signal; International Journal of Biological and Medical Sciences 1, 1(2008), 1-11.
    • (2008) International Journal of Biological and Medical Sciences , vol.1 , Issue.1 , pp. 1-11
    • Meghriche, S.1    Draa, A.2    Boulemden, M.3
  • 26
    • 0034956035 scopus 로고    scopus 로고
    • Radial basis function neural network approach for the diagnosis of coronary artery disease based on the standard electrocardiogram exercise test
    • K. Lewenstein, Radial basis function neural network approach for the diagnosis of coronary artery disease based on the standard electrocardiogram exercise test Med. Biol. Eng. Comput., 39 (2001), 1-6.
    • (2001) Med. Biol. Eng. Comput. , vol.39 , pp. 1-6
    • Lewenstein, K.1
  • 27
    • 0031238401 scopus 로고    scopus 로고
    • Use of an artificial neural network to analyses an ECG with QS complex in V 2 leads
    • N. Ouyang M. Ikeda K. Yamauchi; Use of an artificial neural network to analyses an ECG with QS complex in V 2 leads; Med. Biol. Eng. Comput., 35 (1997), 556-560.
    • (1997) Med. Biol. Eng. Comput. , vol.35 , pp. 556-560
    • Ouyang, N.1    Ikeda, M.2    Yamauchi, K.3
  • 28
    • 26844516043 scopus 로고    scopus 로고
    • Neural network classifier based on the Features of multi-lead ECG
    • L. Wang, K. Chen, and Y.S. Ong (Eds.):, LNCS 3610
    • Mozhiwen, F. Jun, Q. Yazhu, and S. Lan; Neural network classifier based on the Features of multi-lead ECG, L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3610, (2005), 33 - 43.
    • (2005) ICNC 2005 , pp. 33-43
    • Mozhiwen1    Jun, F.2    Yazhu, Q.3    Lan, S.4
  • 29
    • 0032077359 scopus 로고    scopus 로고
    • Marche; Automated neural network detection of wavelet preprocessed electrocardiogram late potentials
    • B. Rakotomamonjy, P. Migeon, Marche; Automated neural network detection of wavelet preprocessed electrocardiogram late potentials; Med. Biol. Eng. Comput., 36 (1998), 346-350.
    • (1998) Med. Biol. Eng. Comput. , vol.36 , pp. 346-350
    • Rakotomamonjy, B.1    Migeon, P.2
  • 31
    • 0034960617 scopus 로고    scopus 로고
    • Detection of abnormality in the electrocardiogram without prior knowledge by using the quantization error of a self-organising map, tested on the European ischaemia database
    • E. A. Fernandez, I P. Willshaw, I C.A. Perazzo, I R. J. Presedo, S. Barro, Detection of abnormality in the electrocardiogram without prior knowledge by using the quantization error of a self-organising map, tested on the European ischaemia database; Med. Biol. Eng. Comput., 39, (2001) 330-337.
    • (2001) Med. Biol. Eng. Comput. , vol.39 , pp. 330-337
    • Fernandez, E.A.1    Willshaw, I.P.2    Perazzo, I.C.A.3    Presedo, I.R.J.4    Barro, S.5
  • 33
    • 34047156638 scopus 로고    scopus 로고
    • Prediction of atrial fibrillation following cardiac surgery using rough set derived rules
    • New York City, USA, Aug 30-Sept 3, 2006
    • Matthew C. Wiggins, Hiram A. Firpi, Raul R. Blanco, Muhammad Amer, and Samuel; Prediction of Atrial Fibrillation following Cardiac Surgery using Rough Set Derived Rules; Proceedings of the 28th IEEE; EMBS Annual International Conference; (New York City, USA, Aug 30-Sept 3, 2006) 2006, 4006-4009.
    • (2006) Proceedings of the 28th IEEE; EMBS Annual International Conference , pp. 4006-4009
    • Wiggins, M.C.1    Firpi, H.A.2    Blanco, R.R.3    Amer, M.4    Samuel5
  • 35
    • 58449110326 scopus 로고    scopus 로고
    • Diagnostic feature analysis of a dobutamine stress echocardiography dataset using rough sets
    • J.F. Peters (Eds), LNCS 5390
    • Revett, K., Diagnostic feature Analysis of a Dobutamine Stress Echocardiography Dataset Using Rough Sets, J.F. Peters (Eds), Transactions in Rough Sets IX, LNCS 5390, pp. 318-327, 2008.
    • (2008) Transactions in Rough Sets IX , vol.9 , pp. 318-327
    • Revett, K.1
  • 37
    • 32644482767 scopus 로고    scopus 로고
    • A fuzzy clustering neural network architecture for classification of ECG arrhythmias
    • Y. zbay, R. Ceylan, B. Karlik; A fuzzy clustering neural network architecture for classification of ECG arrhythmias; Computers in Biology and Medicine 36 (2006) 376-388.
    • (2006) Computers in Biology and Medicine , vol.36 , pp. 376-388
    • Zbay, Y.1    Ceylan, R.2    Karlik, B.3
  • 38
    • 44949159793 scopus 로고    scopus 로고
    • A hybrid method based on artificial immune system and fuzzy k-NN algorithm for diagnosis of heart valve diseases
    • A. Sengur, I. Turkoglu; A hybrid method based on artificial immune system and fuzzy k-NN algorithm for diagnosis of heart valve diseases; Expert Systems withApplications 35 (2008) 1011-1020.
    • (2008) Expert Systems WithApplications , vol.35 , pp. 1011-1020
    • Sengur, A.1    Turkoglu, I.2
  • 41
    • 58349091028 scopus 로고    scopus 로고
    • A novel approach for classification of ECG arrhythmias:Type-2 fuzzy clustering neural network
    • R. Ceylan, Y. zbay, B. Karlik; A novel approach for classification of ECG arrhythmias:Type-2 fuzzy clustering neural network; Expert Systems with Applications; 36, 3, part 2, (2009), 6721-672.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 PART 2 , pp. 6721-7672
    • Ceylan, R.1    Zbay, Y.2    Karlik, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.