메뉴 건너뛰기




Volumn 32, Issue 4, 2010, Pages 425-433

Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters

Author keywords

Artificial intelligence; Fuzzy sets; Neural networks; Rubble mound breakwaters

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ENHANCEMENT TECHNIQUES; FUZZY NEURAL NETWORK MODEL; HYBRID ARTIFICIAL NEURAL NETWORK; HYBRID NEURAL NETWORKS; MULTI-LAYER FEED FORWARD; PRELIMINARY DESIGN; ROBUST TECHNIQUE; RUBBLE MOUND BREAKWATERS; STABILITY ANALYSIS; STABILITY EQUATIONS; STABILITY NUMBER;

EID: 78649744701     PISSN: 01411187     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apor.2010.09.005     Document Type: Article
Times cited : (57)

References (58)
  • 5
    • 33646213016 scopus 로고    scopus 로고
    • Reliability-based risk assessment of rubble mound breakwaters under tsunami attack
    • Ergin A., Balas C.E. Reliability-based risk assessment of rubble mound breakwaters under tsunami attack. Journal of Coastal Research 2002, (SI36):266-272.
    • (2002) Journal of Coastal Research , vol.SI36 , pp. 266-272
    • Ergin, A.1    Balas, C.E.2
  • 6
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • Zadeh L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 1997, 90(2):111-127.
    • (1997) Fuzzy Sets and Systems , vol.90 , Issue.2 , pp. 111-127
    • Zadeh, L.A.1
  • 7
    • 18144439476 scopus 로고    scopus 로고
    • Fuzzy logic and the calculi of fuzzy rules, fuzzy graphs, and fuzzy probabilities
    • Zadeh L.A. Fuzzy logic and the calculi of fuzzy rules, fuzzy graphs, and fuzzy probabilities. Computer and Mathematics with Applications 1999, 37(11, 12):35.
    • (1999) Computer and Mathematics with Applications , vol.37 , Issue.11-12 , pp. 35
    • Zadeh, L.A.1
  • 11
    • 71749105263 scopus 로고    scopus 로고
    • Wave measurements by pressure transducers using artificial neural networks
    • Tsai C.T., Tsai C.H. Wave measurements by pressure transducers using artificial neural networks. Ocean Engineering 2009, 36(15-16):1149-1157.
    • (2009) Ocean Engineering , vol.36 , Issue.15-16 , pp. 1149-1157
    • Tsai, C.T.1    Tsai, C.H.2
  • 12
    • 74649083168 scopus 로고    scopus 로고
    • Prediction of safe sea-state using finite element method and artificial neural networks
    • Yasseri S.F., Bahai H., Bazargan H., Aminzadeh A. Prediction of safe sea-state using finite element method and artificial neural networks. Ocean Engineering 2010, 37(2-3):200-207.
    • (2010) Ocean Engineering , vol.37 , Issue.2-3 , pp. 200-207
    • Yasseri, S.F.1    Bahai, H.2    Bazargan, H.3    Aminzadeh, A.4
  • 14
    • 0034607348 scopus 로고    scopus 로고
    • Interpolation of wave heights
    • Deo M.C., Kumar N.K. Interpolation of wave heights. Ocean Engineering 2000, 27(9):907-919.
    • (2000) Ocean Engineering , vol.27 , Issue.9 , pp. 907-919
    • Deo, M.C.1    Kumar, N.K.2
  • 15
    • 0344286516 scopus 로고    scopus 로고
    • Real time wave forecasting using neural networks
    • Deo M.C., Naidu C.S. Real time wave forecasting using neural networks. Ocean Engineering 1998, 26(3):191-203.
    • (1998) Ocean Engineering , vol.26 , Issue.3 , pp. 191-203
    • Deo, M.C.1    Naidu, C.S.2
  • 17
    • 18744398739 scopus 로고    scopus 로고
    • Neural network for design and reliability analysis of rubble mound breakwaters
    • Kim D.H., Park W.S. Neural network for design and reliability analysis of rubble mound breakwaters. Ocean Engineering 2005, 32(11-12):1332-1349.
    • (2005) Ocean Engineering , vol.32 , Issue.11-12 , pp. 1332-1349
    • Kim, D.H.1    Park, W.S.2
  • 18
    • 71749091169 scopus 로고    scopus 로고
    • MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor
    • Balmat J.F., Lafont F., Maifret R., Pessel N. MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor. Ocean Engineering 2009, 36(15-16):1278-1286.
    • (2009) Ocean Engineering , vol.36 , Issue.15-16 , pp. 1278-1286
    • Balmat, J.F.1    Lafont, F.2    Maifret, R.3    Pessel, N.4
  • 19
    • 78649730074 scopus 로고    scopus 로고
    • Stability analysis of rubble mound breakwaters using ANN. In: Fourth Indian national conference on harbour and ocean engineering. NITK, Surathkal.
    • Mandal S, Rao S, Manjunatha YR, Kim DH. Stability analysis of rubble mound breakwaters using ANN. In: Fourth Indian national conference on harbour and ocean engineering. NITK, Surathkal. 2007.
    • (2007)
    • Mandal, S.1    Rao, S.2    Manjunatha, Y.R.3    Kim, D.H.4
  • 21
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and application
    • Basherr I.A., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods 2000, 43:3-31.
    • (2000) Journal of Microbiological Methods , vol.43 , pp. 3-31
    • Basherr, I.A.1    Hajmeer, M.2
  • 23
    • 0040694523 scopus 로고
    • Data representation for diagnostic neural networks
    • Cherkassky V., Lari-Najafi H. Data representation for diagnostic neural networks. IEEE Expert 1992, 7(5):43-53.
    • (1992) IEEE Expert , vol.7 , Issue.5 , pp. 43-53
    • Cherkassky, V.1    Lari-Najafi, H.2
  • 24
    • 78649758826 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • Tiwari K.M., Chatterjee C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). Journal of Hydrology 2010, 38:220-233.
    • (2010) Journal of Hydrology , vol.38 , pp. 220-233
    • Tiwari, K.M.1    Chatterjee, C.2
  • 25
    • 77349102699 scopus 로고    scopus 로고
    • Power transformer differential protection using neural network principal component analysis and radial basis function neural network
    • Tripathy M. Power transformer differential protection using neural network principal component analysis and radial basis function neural network. Simulation Modelling Practice and Theory 2010, 18:600-611.
    • (2010) Simulation Modelling Practice and Theory , vol.18 , pp. 600-611
    • Tripathy, M.1
  • 26
    • 84990599113 scopus 로고
    • Specifying critical inputs in a genetic algorithm-driven decision support system: an automated facility
    • Pakath R., Zaveri J.S. Specifying critical inputs in a genetic algorithm-driven decision support system: an automated facility. Decision Sciences 1995, 26(6):749-779.
    • (1995) Decision Sciences , vol.26 , Issue.6 , pp. 749-779
    • Pakath, R.1    Zaveri, J.S.2
  • 27
    • 0001126233 scopus 로고    scopus 로고
    • Heuristic principles for the design of artificial neural networks
    • Walczak S., Cerpa N. Heuristic principles for the design of artificial neural networks. Information and Software Technology 1999, 41:107-117.
    • (1999) Information and Software Technology , vol.41 , pp. 107-117
    • Walczak, S.1    Cerpa, N.2
  • 28
    • 76349122682 scopus 로고    scopus 로고
    • Modeling greenhouse air humidity by means of artificial neural network and principal component analysis
    • He F., Ma C. Modeling greenhouse air humidity by means of artificial neural network and principal component analysis. Computers and Electronics in Agriculture 2010, (71S):S19-S23.
    • (2010) Computers and Electronics in Agriculture , vol.71 S
    • He, F.1    Ma, C.2
  • 29
    • 33646084843 scopus 로고    scopus 로고
    • Artificial neural networks based on principal component analysis input selection for quantification in overlapped capillary electrophoresis peaks
    • Zhang Y., Li H., Hou A., Havel J. Artificial neural networks based on principal component analysis input selection for quantification in overlapped capillary electrophoresis peaks. Chemometrics and Intelligent Laboratory Systems 2006, 82:165-175.
    • (2006) Chemometrics and Intelligent Laboratory Systems , vol.82 , pp. 165-175
    • Zhang, Y.1    Li, H.2    Hou, A.3    Havel, J.4
  • 31
    • 0029235119 scopus 로고
    • Application of fuzzy logic and neural network technologies in cone crusher control
    • Moshgbar M., Parkin R., Bearman R.A. Application of fuzzy logic and neural network technologies in cone crusher control. Minerals Engineering 1995, 8(1):41-50.
    • (1995) Minerals Engineering , vol.8 , Issue.1 , pp. 41-50
    • Moshgbar, M.1    Parkin, R.2    Bearman, R.A.3
  • 33
    • 0033913350 scopus 로고    scopus 로고
    • Fuzzy neural networks for estimation and fuzzy controller design: simulation study for a pulp batch digester
    • Belarbi K., Bettou K., Mezaache A. Fuzzy neural networks for estimation and fuzzy controller design: simulation study for a pulp batch digester. Journal of Process Control 2000, 10(1):35-41.
    • (2000) Journal of Process Control , vol.10 , Issue.1 , pp. 35-41
    • Belarbi, K.1    Bettou, K.2    Mezaache, A.3
  • 34
    • 77952743739 scopus 로고    scopus 로고
    • Prediction of the mechanical properties of the post-forged Ti-6Al-4V alloy using fuzzy neural network
    • Yu W., Li M.Q., Luo J., Su S., Li C. Prediction of the mechanical properties of the post-forged Ti-6Al-4V alloy using fuzzy neural network. Materials and Design 2010, 31:3282-3288.
    • (2010) Materials and Design , vol.31 , pp. 3282-3288
    • Yu, W.1    Li, M.Q.2    Luo, J.3    Su, S.4    Li, C.5
  • 35
    • 53349162039 scopus 로고    scopus 로고
    • Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis
    • Juhos I., Makra L., Tóth B. Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis. Simulation Modelling Practice and Theory 2008, 16:1488-1502.
    • (2008) Simulation Modelling Practice and Theory , vol.16 , pp. 1488-1502
    • Juhos, I.1    Makra, L.2    Tóth, B.3
  • 36
    • 84975711237 scopus 로고    scopus 로고
    • Development of pistachio sorting system using principal component analysis (PCA) assisted artificial neural network (ANN) of impact acoustics
    • Omid M., Mahmoudi A., Omid M.H. Development of pistachio sorting system using principal component analysis (PCA) assisted artificial neural network (ANN) of impact acoustics. Expert Systems with Applications 2010, 37:7205-7212.
    • (2010) Expert Systems with Applications , vol.37 , pp. 7205-7212
    • Omid, M.1    Mahmoudi, A.2    Omid, M.H.3
  • 37
    • 34447620283 scopus 로고    scopus 로고
    • Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis
    • Zhang Y.X. Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta 2007, 73:68-75.
    • (2007) Talanta , vol.73 , pp. 68-75
    • Zhang, Y.X.1
  • 38
    • 76949094511 scopus 로고    scopus 로고
    • Prediction of flow stress in isothermal compression of Ti-6Al-4V alloy using fuzzy neural network
    • Luo J., Li M., Yu W. Prediction of flow stress in isothermal compression of Ti-6Al-4V alloy using fuzzy neural network. Materials and Design 2010, 31:3078-3083.
    • (2010) Materials and Design , vol.31 , pp. 3078-3083
    • Luo, J.1    Li, M.2    Yu, W.3
  • 39
    • 70449532144 scopus 로고    scopus 로고
    • Comparing four bankruptcy prediction models: logit, quadratic interval logit, neural and fuzzy neural networks
    • Tseng F.M., Hu Y.C. Comparing four bankruptcy prediction models: logit, quadratic interval logit, neural and fuzzy neural networks. Expert Systems with Applications 2010, 37:1846-1853.
    • (2010) Expert Systems with Applications , vol.37 , pp. 1846-1853
    • Tseng, F.M.1    Hu, Y.C.2
  • 40
    • 78649747583 scopus 로고
    • Rock slopes and gravel beaches under wave attack. Delft Hydraulics Publication. No. 396. Delft (The Netherlands);
    • Van Der Meer JW. Rock slopes and gravel beaches under wave attack. Delft Hydraulics Publication. No. 396. Delft (The Netherlands); 1988.
    • (1988)
    • Van Der Meer, J.W.1
  • 43
    • 0031127591 scopus 로고    scopus 로고
    • Two strategies to avoid overfitting in feedforward networks
    • Schittenkopf C., Deco G., Brauer W. Two strategies to avoid overfitting in feedforward networks. Neural Networks 1997, 10(3):505-516.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 505-516
    • Schittenkopf, C.1    Deco, G.2    Brauer, W.3
  • 45
    • 0032142131 scopus 로고    scopus 로고
    • A method for predicting the annual building heating demand based on limited performance data
    • Olofsson T., Anderson S., Östin R. A method for predicting the annual building heating demand based on limited performance data. Energy and Buildings 1998, 28(1):101-108.
    • (1998) Energy and Buildings , vol.28 , Issue.1 , pp. 101-108
    • Olofsson, T.1    Anderson, S.2    Östin, R.3
  • 46
    • 0034847598 scopus 로고    scopus 로고
    • A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process
    • Choi D.J., Park H. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process. Water Research 2001, 35(16):3959-3967.
    • (2001) Water Research , vol.35 , Issue.16 , pp. 3959-3967
    • Choi, D.J.1    Park, H.2
  • 47
    • 84990571875 scopus 로고
    • The application of neural networks and a qualitative response model to the auditor's going concern uncertainty decision
    • Lenard M.J., Alam P., Madey G.R. The application of neural networks and a qualitative response model to the auditor's going concern uncertainty decision. Decision Sciences 1995, 26(2):209-227.
    • (1995) Decision Sciences , vol.26 , Issue.2 , pp. 209-227
    • Lenard, M.J.1    Alam, P.2    Madey, G.R.3
  • 48
    • 84990623144 scopus 로고
    • Artificial neural network models for pricing initial public offerings
    • Jain B.A., Nag B.R. Artificial neural network models for pricing initial public offerings. Decision Sciences 1995, 26(3):283-302.
    • (1995) Decision Sciences , vol.26 , Issue.3 , pp. 283-302
    • Jain, B.A.1    Nag, B.R.2
  • 49
    • 0028448573 scopus 로고
    • A classification approach using multi-layered neural networks
    • Piramuthu S., Shaw M., Gentry J. A classification approach using multi-layered neural networks. Decision Support Systems 1994, 11(5):509-525.
    • (1994) Decision Support Systems , vol.11 , Issue.5 , pp. 509-525
    • Piramuthu, S.1    Shaw, M.2    Gentry, J.3
  • 51
    • 0035217390 scopus 로고    scopus 로고
    • On equivalence of approximate reasoning results using different interpretations of fuzzy if-then rules
    • Czogala E., Leski J. On equivalence of approximate reasoning results using different interpretations of fuzzy if-then rules. Fuzzy Sets and Systems 2001, 117(2):279-296.
    • (2001) Fuzzy Sets and Systems , vol.117 , Issue.2 , pp. 279-296
    • Czogala, E.1    Leski, J.2
  • 52
    • 0036680241 scopus 로고    scopus 로고
    • Analytical structures and analysis of fuzzy PD controllers with multifuzzy sets having variable cross-point level
    • Ambalal V.P. Analytical structures and analysis of fuzzy PD controllers with multifuzzy sets having variable cross-point level. Fuzzy Sets and Systems 2002, 129(3):311-334.
    • (2002) Fuzzy Sets and Systems , vol.129 , Issue.3 , pp. 311-334
    • Ambalal, V.P.1
  • 54
    • 0042138208 scopus 로고    scopus 로고
    • Fuzzy neural networks for gas sensing
    • Vlachos D., Avaritsiotis J. Fuzzy neural networks for gas sensing. Sensors and Actuators 1996, 33(1-3):77-82.
    • (1996) Sensors and Actuators , vol.33 , Issue.1-3 , pp. 77-82
    • Vlachos, D.1    Avaritsiotis, J.2
  • 55
    • 0039181713 scopus 로고    scopus 로고
    • Modeling chaotic two-dimensional mapping with fuzzy-neuron networks
    • Yeh I.C. Modeling chaotic two-dimensional mapping with fuzzy-neuron networks. Fuzzy Sets and Systems 1999, 105(3):421-427.
    • (1999) Fuzzy Sets and Systems , vol.105 , Issue.3 , pp. 421-427
    • Yeh, I.C.1
  • 56
    • 0028484319 scopus 로고
    • A fuzzy neural network and its application to pattern recognition
    • Kwan H.K., Cai Y. A fuzzy neural network and its application to pattern recognition. IEEE Transactions on Fuzzy Systems 1994, 2(3):185-193.
    • (1994) IEEE Transactions on Fuzzy Systems , vol.2 , Issue.3 , pp. 185-193
    • Kwan, H.K.1    Cai, Y.2
  • 57
    • 0033718760 scopus 로고    scopus 로고
    • Design neural networks based fuzzy logic
    • Yang Y., Xu X., Zhang W. Design neural networks based fuzzy logic. Fuzzy Sets and Systems 2000, 114(2):325-328.
    • (2000) Fuzzy Sets and Systems , vol.114 , Issue.2 , pp. 325-328
    • Yang, Y.1    Xu, X.2    Zhang, W.3
  • 58
    • 0000652239 scopus 로고
    • Theory of t-norms and fuzzy inference methods
    • Gupta M.M., Qi J. Theory of t-norms and fuzzy inference methods. Fuzzy Sets and Systems 1991, 40(3):431-450.
    • (1991) Fuzzy Sets and Systems , vol.40 , Issue.3 , pp. 431-450
    • Gupta, M.M.1    Qi, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.