메뉴 건너뛰기




Volumn 74, Issue 1-3, 2010, Pages 447-456

Ordinal extreme learning machine

Author keywords

Error correcting output codes; Extreme learning machine; Ordinal regression

Indexed keywords

BATCH MODES; DATA SETS; DECOMPOSITION METHODS; ENCODING SCHEMES; ERROR CORRECTING OUTPUT CODE; EXTREME LEARNING MACHINE; FEED-FORWARD NETWORK; GAUSSIAN PROCESSES; GENERALIZATION ABILITY; HIDDEN LAYERS; INPUT WEIGHTS; MULTI-OUTPUT; NEUROCOMPUTING; NON-LINEAR; ORDINAL REGRESSION; REGRESSION PROBLEM; SUPPORT VECTOR; TRAINING SPEED;

EID: 78649492071     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.08.022     Document Type: Article
Times cited : (91)

References (36)
  • 2
    • 56349133747 scopus 로고    scopus 로고
    • A neural network approach to ordinal regression, in: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN'2008), 2008
    • J.L. Cheng, Z. Wang, G. Pollastri, A neural network approach to ordinal regression, in: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN'2008), 2008, pp. 1279-1284.
    • Cheng, J.L.1    Wang, Z.2    Pollastri, G.3
  • 3
    • 1942515261 scopus 로고    scopus 로고
    • Pranking with ranking, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2001)
    • K. Crammer, Y. Singer, Pranking with ranking, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2001), vol. 14, 2001, pp. 641-647.
    • (2001) , vol.14 , pp. 641-647
    • Crammer, K.1    Singer, Y.2
  • 4
    • 14344253490 scopus 로고    scopus 로고
    • Unifying collaborative and content-based fi{ligature}ltering, in: Proceedings of the 21st International Conference on Machine Learning (ICML'2004)
    • J. Basilico, T. Hofmann, Unifying collaborative and content-based fi{ligature}ltering, in: Proceedings of the 21st International Conference on Machine Learning (ICML'2004), 2004, pp. 65-72.
    • (2004) , pp. 65-72
    • Basilico, J.1    Hofmann, T.2
  • 6
    • 31844446958 scopus 로고    scopus 로고
    • Learning to rank using gradient descent, in: Proceedings of International Conference on Machine Learning (ICML'2005)
    • C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G. Hullender, Learning to rank using gradient descent, in: Proceedings of International Conference on Machine Learning (ICML'2005), 2005, pp. 89-97.
    • (2005) , pp. 89-97
    • Burges, C.J.C.1    Shaked, T.2    Renshaw, E.3    Lazier, A.4    Deeds, M.5    Hamilton, N.6    Hullender, G.7
  • 8
    • 33846089978 scopus 로고    scopus 로고
    • Yu, Hiearachical bayesian modelling with gaussian processes, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2005),
    • A. Schwaighofer, V. Tresp, K. Yu, Hiearachical bayesian modelling with gaussian processes, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2005), vol. 17, 2005, pp. 1209-1216.
    • (2005) , vol.17 , pp. 1209-1216
    • Schwaighofer, V.1    Tresp, K.2
  • 9
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: a unifying approach for margin classifi{ligature}ers
    • Allwein E.L., Schapire R.E., Singer Y. Reducing multiclass to binary: a unifying approach for margin classifi{ligature}ers. Journal of Machine Learning Research 2001, 1:113-141.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 10
    • 84899011021 scopus 로고    scopus 로고
    • Ranking with large margin principle: two approaches, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2003),
    • A. Shashua, A. Levin, Ranking with large margin principle: two approaches, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2003), vol. 15, 2003, pp. 937-944.
    • (2003) , vol.15 , pp. 937-944
    • Shashua, A.1    Levin, A.2
  • 11
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • Chu W., Keerthi S.S. Support vector ordinal regression. Neural Computation 2007, 19(3):792-815.
    • (2007) Neural Computation , vol.19 , Issue.3 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 12
    • 26944498632 scopus 로고    scopus 로고
    • Learnability of bipartite ranking functions, in: Proceedings of the 18th Annual Conference on Learning Theory (COLT'2005)
    • S. Agarwal, D. Roth, Learnability of bipartite ranking functions, in: Proceedings of the 18th Annual Conference on Learning Theory (COLT'2005), 2005, pp. 16-31.
    • (2005) , pp. 16-31
    • Agarwal, S.1    Roth, D.2
  • 14
    • 14344256758 scopus 로고    scopus 로고
    • Log-linear models for label ranking, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2003),
    • O. Dekel, J. Keshet, Y. Singer, Log-linear models for label ranking, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2003), vol. 16, 2003, pp. 209-216.
    • (2003) , vol.16 , pp. 209-216
    • Dekel, O.1    Keshet, J.2    Singer, Y.3
  • 15
    • 1942450175 scopus 로고    scopus 로고
    • Constraint classifi{ligature}cation: a new approach to multiclass classifi{ligature}cation and ranking, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2002)
    • S. Har-Peled, D. Roth, D. Zimak, Constraint classifi{ligature}cation: a new approach to multiclass classifi{ligature}cation and ranking, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2002), vol. 15, 2002, pp. 267-280.
    • (2002) , vol.15 , pp. 267-280
    • Har-Peled, S.1    Roth, D.2    Zimak, D.3
  • 17
    • 31844432421 scopus 로고    scopus 로고
    • Augmenting naive bayes for ranking, in: Proceedings of the International Conference on Machine Learning (ICML'2005),
    • H. Zhang, L. Jiang, J. Su, Augmenting naive bayes for ranking, in: Proceedings of the International Conference on Machine Learning (ICML'2005), 2005, pp. 1020-1027.
    • (2005) , pp. 1020-1027
    • Zhang, H.1    Jiang, L.2    Su, J.3
  • 18
    • 33646259490 scopus 로고    scopus 로고
    • Bayesian hierarchical ordinal regression, in: Proceedings of the International Conference on Artifi{ligature}cal Neural Networks (ICANN'2005),
    • U. Paquet, S. Holden, A. Naish-Guzman, Bayesian hierarchical ordinal regression, in: Proceedings of the International Conference on Artifi{ligature}cal Neural Networks (ICANN'2005), 2005, pp. 267-272.
    • (2005) , pp. 267-272
    • Paquet, U.1    Holden, S.2    Naish-Guzman, A.3
  • 19
    • 84948166287 scopus 로고    scopus 로고
    • A simple approach to ordinal classifi{ligature}cation, in: Proceedings of the European Conference on Machine Learning (ECML'2001),
    • E. Frank, M. Hall, A simple approach to ordinal classifi{ligature}cation, in: Proceedings of the European Conference on Machine Learning (ECML'2001), 2001, pp. 145-156.
    • (2001) , pp. 145-156
    • Frank, E.1    Hall, M.2
  • 20
    • 39649107920 scopus 로고    scopus 로고
    • Ordinal regression by extended binary classifi{ligature}cation, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2006),
    • L. Li, H. Lin, Ordinal regression by extended binary classifi{ligature}cation, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2006), vol. 20, 2006, pp. 865-872.
    • (2006) , vol.20 , pp. 865-872
    • Li, L.1    Lin, H.2
  • 21
    • 84864039510 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2006),
    • C.J.C. Burges, R. Ragno, Q.V. Le, Learning to rank with nonsmooth cost functions, in: Proceedings of the Advances in Neural Information Processing Systems (NIPS'2006), vol. 20, 2006, pp. 193-200.
    • (2006) , vol.20 , pp. 193-200
    • Burges, C.J.C.1    Ragno, R.2    Le, Q.V.3
  • 22
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data, in: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD'2002),
    • T. Joachims, Optimizing search engines using clickthrough data, in: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD'2002), 2002, pp.133-142.
    • (2002) , pp. 133-142
    • Joachims, T.1
  • 23
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 25
    • 56349171345 scopus 로고    scopus 로고
    • Extreme learning machine for multi-categories Classifi{ligature}cation applications, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN'2008),
    • H.-J. Rong, G.-B. Huang, Y.-S. Ong, Extreme learning machine for multi-categories Classifi{ligature}cation applications, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN'2008), 2008, pp. 1709-1713.
    • (2008) , pp. 1709-1713
    • Rong, H.-J.1    Huang, G.-B.2    Ong, Y.-S.3
  • 26
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 2006, 17(4):879-892.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 29
    • 36349016616 scopus 로고    scopus 로고
    • Kernel regression with order preferences, in: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI'2007),
    • X.J. Zhu, A.B. Goldberg, Kernel regression with order preferences, in: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI'2007), 2007, pp. 681-687.
    • (2007) , pp. 681-687
    • Zhu, X.J.1    Goldberg, A.B.2
  • 30
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 31
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Lan Y., Soh Y.C., Huang G.-B. Ensemble of online sequential extreme learning machine. Neurocomputing 2009, 72(13-15):3391-3395.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.C.2    Huang, G.-B.3
  • 32
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 33
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • Huang G.-B., Li M.-B., Chen L., Siew C.-K. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 2008, 71(4-6):576-583.
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.-K.4
  • 36
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping Michael E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 2001, 1:211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.