-
3
-
-
17444409678
-
Continuous time mean-variance portfolio selection with bankruptcy prohibition
-
T.R. Bielecki, H. Jin, S.R. Pliska, and X.Y. Zhou Continuous time mean-variance portfolio selection with bankruptcy prohibition Mathematical Finance 15 2005 213 244
-
(2005)
Mathematical Finance
, vol.15
, pp. 213-244
-
-
Bielecki, T.R.1
Jin, H.2
Pliska, S.R.3
Zhou, X.Y.4
-
4
-
-
84880027021
-
Mean variance portfolio optimization with state dependent risk aversion
-
T. Bjork, A. Murgoci, X. Zhou, Mean variance portfolio optimization with state dependent risk aversion, Working paper, Stockholm School of Economics, 2010.
-
(2010)
Working Paper, Stockholm School of Economics
-
-
Bjork, T.1
Murgoci, A.2
Zhou, X.3
-
5
-
-
33645934793
-
Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans
-
A.J.G. Cairns, D. Blake, and K. Dowd Stochastic lifestyling: optimal dynamic asset allocation for defined contribution pension plans Journal of Economic Dynamics and Control 30 2006 843 877
-
(2006)
Journal of Economic Dynamics and Control
, vol.30
, pp. 843-877
-
-
Cairns, A.J.G.1
Blake, D.2
Dowd, K.3
-
6
-
-
33750292076
-
Asset and liability management under a continuous time mean variance optimization framework
-
M. Chiu, and D. Li Asset and liability management under a continuous time mean variance optimization framework Insurance: Mathematics and Economics 39 2006 330 355
-
(2006)
Insurance: Mathematics and Economics
, vol.39
, pp. 330-355
-
-
Chiu, M.1
Li, D.2
-
7
-
-
78649679204
-
A Hamilton-Jacobi-Bellman approach to optimal trade execution
-
forthcoming
-
P.A. Forsyth, A Hamilton-Jacobi-Bellman approach to optimal trade execution, Applied Numerical Mathematics, forthcoming.
-
Applied Numerical Mathematics
-
-
Forsyth, P.A.1
-
9
-
-
4644274435
-
Optimal investment choices post retirment in a defined contribution pension scheme
-
R. Gerrard, S. Haberman, and E. Vigna Optimal investment choices post retirment in a defined contribution pension scheme Insurance: Mathematics and Economics 35 2004 321 342
-
(2004)
Insurance: Mathematics and Economics
, vol.35
, pp. 321-342
-
-
Gerrard, R.1
Haberman, S.2
Vigna, E.3
-
10
-
-
85048747036
-
Mean variance portfolio selection and efficient frontier for defined contribution pension schemes
-
B. Hojgaard, E. Vigna, Mean variance portfolio selection and efficient frontier for defined contribution pension schemes, Working Paper, Aalborg University, 2007.
-
(2007)
Working Paper, Aalborg University
-
-
Hojgaard, B.1
Vigna, E.2
-
11
-
-
38749099790
-
Structure preserving stochastic integration schemes in interest rate derivative modelling
-
C. Kahl, M. Gunther, and T. Rossberg Structure preserving stochastic integration schemes in interest rate derivative modelling Applied Numerical Mathematics 58 2008 284 295
-
(2008)
Applied Numerical Mathematics
, vol.58
, pp. 284-295
-
-
Kahl, C.1
Gunther, M.2
Rossberg, T.3
-
12
-
-
0007384270
-
Approximating value functions for controlled degenerate diffusion processes by using piece-wise constant policies
-
N.V. Krylov Approximating value functions for controlled degenerate diffusion processes by using piece-wise constant policies Electronic Journal of Probability 4 2 1999 1 19
-
(1999)
Electronic Journal of Probability
, vol.4
, Issue.2
, pp. 1-19
-
-
Krylov, N.V.1
-
13
-
-
0242720235
-
A geometric approach to multiperiod mean variance optimization of assets and liabilities
-
M. Leippold, F. Trojani, and P. Vanini A geometric approach to multiperiod mean variance optimization of assets and liabilities Journal of Economic Dynamics and Control 28 2004 1079 1113
-
(2004)
Journal of Economic Dynamics and Control
, vol.28
, pp. 1079-1113
-
-
Leippold, M.1
Trojani, F.2
Vanini, P.3
-
14
-
-
0034347106
-
Optimal dynamic portfolio selection: Multiperiod mean variance formulation
-
D. Li, and W.-L. Ng Optimal dynamic portfolio selection: multiperiod mean variance formulation Mathematical Finance 10 2000 387 406
-
(2000)
Mathematical Finance
, vol.10
, pp. 387-406
-
-
Li, D.1
Ng, W.-L.2
-
15
-
-
33846879563
-
Continuous time mean variance efficiency and the 80% rule
-
X. Li, and X.Y. Zhou Continuous time mean variance efficiency and the 80% rule Annals of Applied Probability 16 2006 1751 1763
-
(2006)
Annals of Applied Probability
, vol.16
, pp. 1751-1763
-
-
Li, X.1
Zhou, X.Y.2
-
16
-
-
0036403910
-
Dynamic mean variance portfolio selection with no-shorting constraints
-
X. Li, X.Y. Zhou, and E.B. Lim Dynamic mean variance portfolio selection with no-shorting constraints SIAM Journal on Control and Optimization 40 2002 1540 1555
-
(2002)
SIAM Journal on Control and Optimization
, vol.40
, pp. 1540-1555
-
-
Li, X.1
Zhou, X.Y.2
Lim, E.B.3
-
17
-
-
0011090049
-
Optimum consumption and portfolio rules in a continuous time model
-
R.C. Merton Optimum consumption and portfolio rules in a continuous time model Journal of Economics Theory 3 1971 373 413
-
(1971)
Journal of Economics Theory
, vol.3
, pp. 373-413
-
-
Merton, R.C.1
-
18
-
-
0742265006
-
Dynamic asset allocation with mean variance preferences and a solvency constraint
-
P. Nguyen, and R. Portrai Dynamic asset allocation with mean variance preferences and a solvency constraint Journal of Economic Dynamics and Control 26 2002 11 32
-
(2002)
Journal of Economic Dynamics and Control
, vol.26
, pp. 11-32
-
-
Nguyen, P.1
Portrai, R.2
-
19
-
-
72549091850
-
Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation
-
J. Wang, and P.A. Forsyth Numerical solution of the Hamilton-Jacobi- Bellman formulation for continuous time mean variance asset allocation Journal of Economic Dynamics and Control 34 2010 207 230
-
(2010)
Journal of Economic Dynamics and Control
, vol.34
, pp. 207-230
-
-
Wang, J.1
Forsyth, P.A.2
-
21
-
-
0033722043
-
Continuous time mean variance portfolio selection: A stochastic LQ framework
-
X.Y. Zhou, and D. Li Continuous time mean variance portfolio selection: a stochastic LQ framework Applied Mathematics and Optimization 42 2000 19 33
-
(2000)
Applied Mathematics and Optimization
, vol.42
, pp. 19-33
-
-
Zhou, X.Y.1
Li, D.2
|