메뉴 건너뛰기




Volumn 35, Issue 1, 2011, Pages 63-70

Identification of semi-parametric hybrid process models

Author keywords

Hybrid modelling; Model identification; Semi parametric models

Indexed keywords

BLACK BOXES; BLACK-BOX COMPONENTS; BLACK-BOX MODEL; CHEMICAL KINETICS; DATA-DRIVEN; HYBRID MODEL; HYBRID MODELLING; HYBRID PROCESS; MODEL IDENTIFICATION; PREDICTIVE PERFORMANCE; PROCESS VARIABLES; REGULARIZATION METHODS; SECOND LEVEL; SEMI-PARAMETRIC MODELS; SEMIPARAMETRIC; TOLUENE NITRATION PROCESS; TRAINING DATA; TWO-LEVEL APPROACH;

EID: 78649487934     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2010.05.002     Document Type: Article
Times cited : (20)

References (32)
  • 1
    • 2942597686 scopus 로고    scopus 로고
    • Incremental and simultaneous identification of reaction kinetics: Methods and comparison
    • Bardow A., Marquardt W. Incremental and simultaneous identification of reaction kinetics: Methods and comparison. Chemical Engineering Science 2004, 59:2673-2684.
    • (2004) Chemical Engineering Science , vol.59 , pp. 2673-2684
    • Bardow, A.1    Marquardt, W.2
  • 2
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven P., Wahba G. Smoothing noisy data with spline functions. Numerische Mathematik 1979, 31:377-403.
    • (1979) Numerische Mathematik , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 9
    • 0000158467 scopus 로고    scopus 로고
    • Adaptive tuning of numerical weather prediction models: Simultaneous estimation of weighting, smoothing and mechanistic parameters
    • Gong J., Wahba G., Johnson D.R., Tribbia J. Adaptive tuning of numerical weather prediction models: Simultaneous estimation of weighting, smoothing and mechanistic parameters. Monthly Weather Review 1998, 126:210.
    • (1998) Monthly Weather Review , vol.126 , pp. 210
    • Gong, J.1    Wahba, G.2    Johnson, D.R.3    Tribbia, J.4
  • 11
    • 38849194640 scopus 로고    scopus 로고
    • Incremental identification of hybrid process models
    • Kahrs O., Marquardt W. Incremental identification of hybrid process models. Computers & Chemical Engineering 2008, 32:694-705.
    • (2008) Computers & Chemical Engineering , vol.32 , pp. 694-705
    • Kahrs, O.1    Marquardt, W.2
  • 12
    • 33846312152 scopus 로고    scopus 로고
    • A semi-mechanistic model building framework based on selective and localized model extensions
    • GEPSI-PSE Group
    • Lima P.V, Saraiva P.M. A semi-mechanistic model building framework based on selective and localized model extensions. Computers & Chemical Engineering 2007, 31:361-373. GEPSI-PSE Group.
    • (2007) Computers & Chemical Engineering , vol.31 , pp. 361-373
    • Lima, P.V.1    Saraiva, P.M.2
  • 13
    • 0028484517 scopus 로고
    • Neural network contributions in biotechnology
    • Montague G., Morris J. Neural network contributions in biotechnology. Trends in Biotechnology 1994, 12:312-324.
    • (1994) Trends in Biotechnology , vol.12 , pp. 312-324
    • Montague, G.1    Morris, J.2
  • 14
    • 1842840116 scopus 로고    scopus 로고
    • Combining first principles modelling and artificial neural networks: A general framework
    • Oliveira R. Combining first principles modelling and artificial neural networks: A general framework. Computers & Chemical Engineering 2004, 28:755-766.
    • (2004) Computers & Chemical Engineering , vol.28 , pp. 755-766
    • Oliveira, R.1
  • 15
    • 78649476843 scopus 로고    scopus 로고
    • MATLAB code of the differential evolution algorithm. On-line available at Accessed 05.12.05.
    • Price, K. & Storn, R. (1996). MATLAB code of the differential evolution algorithm. On-line available at Accessed 05.12.05. http://www.icsi.berkeley.edu/~storn/code.html.
    • (1996)
    • Price, K.1    Storn, R.2
  • 16
    • 0003591911 scopus 로고    scopus 로고
    • Process Systems Enterprise Ltd., 23.02.2004, Process Systems Enterprise
    • Process Systems Enterprise gPROMS advanced user guide 2004, Process Systems Enterprise Ltd., 23.02.2004.
    • (2004) gPROMS advanced user guide
  • 17
    • 0026806616 scopus 로고
    • A hybrid neural network-First principles approach to process modelling
    • Psichogios D.D., Ungar L.H. A hybrid neural network-First principles approach to process modelling. AIChE Journal 1992, 38(10):1499-1511.
    • (1992) AIChE Journal , vol.38 , Issue.10 , pp. 1499-1511
    • Psichogios, D.D.1    Ungar, L.H.2
  • 18
    • 34250516079 scopus 로고
    • Smoothing by spline functions
    • Reinsch C. Smoothing by spline functions. Numerische Mathematik 1967, 10:177-183.
    • (1967) Numerische Mathematik , vol.10 , pp. 177-183
    • Reinsch, C.1
  • 19
    • 0035479357 scopus 로고    scopus 로고
    • A generalized regularization method for nonlinear ill-posed problems enhanced for nonlinear regularization terms
    • Roths T., Marth M., Weese J., Honerkamp J. A generalized regularization method for nonlinear ill-posed problems enhanced for nonlinear regularization terms. Computer Physics Communications 2001, 139:279-296.
    • (2001) Computer Physics Communications , vol.139 , pp. 279-296
    • Roths, T.1    Marth, M.2    Weese, J.3    Honerkamp, J.4
  • 21
    • 76449101918 scopus 로고    scopus 로고
    • Hybrid model of steam boiler
    • Rusinowski H., Stanek W. Hybrid model of steam boiler. Energy 2010, 35(2):1107-1113.
    • (2010) Energy , vol.35 , Issue.2 , pp. 1107-1113
    • Rusinowski, H.1    Stanek, W.2
  • 22
    • 78649454595 scopus 로고    scopus 로고
    • (in press). A hybrid neural approach to model batch fermentation of 'ricotta cheese whey' to ethanol. Computers & Chemical Engineering.
    • Saraceno, A., Curcio, S., Calabro, V., & Iorio, G. (in press). A hybrid neural approach to model batch fermentation of 'ricotta cheese whey' to ethanol. Computers & Chemical Engineering.
    • Saraceno, A.1    Curcio, S.2    Calabro, V.3    Iorio, G.4
  • 24
    • 0028484335 scopus 로고
    • Modelling chemical processes using prior knowledge and neural networks
    • Thompson M.L., Kramer M.A. Modelling chemical processes using prior knowledge and neural networks. AIChE Journal 1994, 40(8):1328-1340.
    • (1994) AIChE Journal , vol.40 , Issue.8 , pp. 1328-1340
    • Thompson, M.L.1    Kramer, M.A.2
  • 25
    • 0035904350 scopus 로고    scopus 로고
    • Modelling and optimal control of a batch polymerization reactor using a hybrid stacked recurrent neural network model
    • Tian Y., Zhang J., Morris J. Modelling and optimal control of a batch polymerization reactor using a hybrid stacked recurrent neural network model. Industrial & Engineering Chemistry Research 2001, 40:4525-4535.
    • (2001) Industrial & Engineering Chemistry Research , vol.40 , pp. 4525-4535
    • Tian, Y.1    Zhang, J.2    Morris, J.3
  • 27
    • 18244392672 scopus 로고    scopus 로고
    • Simulation-based optimization with surrogate models-Application to supply chain management
    • Wan X., Pekny J.F., Reklaitis G.V. Simulation-based optimization with surrogate models-Application to supply chain management. Computers & Chemical Engineering 2005, 29:1317-1328.
    • (2005) Computers & Chemical Engineering , vol.29 , pp. 1317-1328
    • Wan, X.1    Pekny, J.F.2    Reklaitis, G.V.3
  • 28
    • 77951296145 scopus 로고    scopus 로고
    • Hybrid modeling of penicillin fermentation process based on least square support vector machine
    • Wang X., Chen J., Liu C., Pan F. Hybrid modeling of penicillin fermentation process based on least square support vector machine. Chemical Engineering Research and Design 2010, 88(4):415-420.
    • (2010) Chemical Engineering Research and Design , vol.88 , Issue.4 , pp. 415-420
    • Wang, X.1    Chen, J.2    Liu, C.3    Pan, F.4
  • 29
    • 0027695591 scopus 로고
    • A regularization method for nonlinear ill-posed problems
    • Weese J. A regularization method for nonlinear ill-posed problems. Computer Physics Communications 1993, 77:429-440.
    • (1993) Computer Physics Communications , vol.77 , pp. 429-440
    • Weese, J.1
  • 30
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Computers & Chemical Engineering 2004, 28:1489-1498.
    • (2004) Computers & Chemical Engineering , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.