메뉴 건너뛰기




Volumn 2, Issue 4, 2008, Pages 622-629

Using support vector machines to detect therapeutically incorrect measurements by the MiniMed CGMS®

Author keywords

Continuous glucose monitor; Fault detection; Statistical learning; Support vector machine

Indexed keywords


EID: 78649428748     PISSN: None     EISSN: 19322968     Source Type: Journal    
DOI: 10.1177/193229680800200413     Document Type: Article
Times cited : (22)

References (13)
  • 1
    • 27644516142 scopus 로고    scopus 로고
    • Making sense of glucose monitoring technologies: From SMBG to CGM
    • Mazze RS. Making sense of glucose monitoring technologies: from SMBG to CGM. Diabetes Technol Ther. 2005;7(5):784-7.
    • (2005) Diabetes Technol Ther. , vol.7 , Issue.5 , pp. 784-787
    • Mazze, R.S.1
  • 2
    • 0041666413 scopus 로고    scopus 로고
    • Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs
    • Guerci B, Floriot M, Böhme P, Durain D, Benichou M, Jelliman S, Drouin P. Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs. Diabetes Care. 2003;26(3):582-9.
    • (2003) Diabetes Care , vol.26 , Issue.3 , pp. 582-589
    • Guerci, B.1    Floriot, M.2    Böhme, P.3    Durain, D.4    Benichou, M.5    Jelliman, S.6    Drouin, P.7
  • 3
    • 33746629303 scopus 로고    scopus 로고
    • A critical appraisal of the continuous glucose-error grid analysis
    • Wenholt IM, Hoekstra JB, Devries JH. A critical appraisal of the continuous glucose-error grid analysis. Diabetes Care. 2006;29(8):1805-11.
    • (2006) Diabetes Care , vol.29 , Issue.8 , pp. 1805-1811
    • Wenholt, I.M.1    Hoekstra, J.B.2    Devries, J.H.3
  • 4
    • 0023205574 scopus 로고
    • Evaluating clinical accuracy of systems for self-monitoring of blood glucose
    • Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10(5):622-8.
    • (1987) Diabetes Care , vol.10 , Issue.5 , pp. 622-628
    • Clarke, W.L.1    Cox, D.2    Gonder-Frederick, L.A.3    Carter, W.4    Pohl, S.L.5
  • 5
    • 84908219488 scopus 로고
    • Statistical methods for assessing agreement between two methods of clinical measurement
    • Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10.
    • (1986) Lancet , vol.1 , Issue.8476 , pp. 307-310
    • Bland, J.M.1    Altman, D.G.2
  • 6
    • 0033855803 scopus 로고    scopus 로고
    • A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose
    • Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care. 2000;23(8):1143-8.
    • (2000) Diabetes Care , vol.23 , Issue.8 , pp. 1143-1148
    • Parkes, J.L.1    Slatin, S.L.2    Pardo, S.3    Ginsberg, B.H.4
  • 7
    • 3342981187 scopus 로고    scopus 로고
    • Evaluating the accuracy of continuous glucose-monitoring sensors: Continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data
    • Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL. Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care. 2004;27(8):1922-8.
    • (2004) Diabetes Care , vol.27 , Issue.8 , pp. 1922-1928
    • Kovatchev, B.P.1    Gonder-Frederick, L.A.2    Cox, D.J.3    Clarke, W.L.4
  • 8
    • 25644435718 scopus 로고    scopus 로고
    • Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis
    • Clarke WL, Anderson S, Farhy L, Breton M, Gonder-Frederick L, Cox D, Kovatchev B. Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis. Diabetes Care. 2005;28(10):2412-7.
    • (2005) Diabetes Care , vol.28 , Issue.10 , pp. 2412-2417
    • Clarke, W.L.1    Anderson, S.2    Farhy, L.3    Breton, M.4    Gonder-Frederick, L.5    Cox, D.6    Kovatchev, B.7
  • 9
    • 0003074296 scopus 로고    scopus 로고
    • Support vector machines
    • Hearst, MA. Support Vector Machines. IEEE Intelligent Systems. 1998;13(4):18-28.
    • (1998) IEEE Intelligent Systems , vol.13 , Issue.4 , pp. 18-28
    • Hearst, M.A.1
  • 12
    • 34248589755 scopus 로고    scopus 로고
    • Bagging linear sparse Bayesian learning models for variable selection in cancer diagnosis
    • Chuan Lu, Devos A, Suykens J A K, Arus C, Van Huffel S. Bagging linear sparse Bayesian learning models for variable selection in cancer diagnosis. IEEE Trans Inf Technol Biomed. 2007;11(3):338-47.
    • (2007) IEEE Trans Inf Technol Biomed. , vol.11 , Issue.3 , pp. 338-347
    • Lu, C.1    Devos, A.2    Suykens, J.A.K.3    Arus, C.4    Van Huffel, S.5
  • 13
    • 85039651707 scopus 로고    scopus 로고
    • A support vector machines classifer to assess the severity of idiopathic scoliosis from surface topography
    • Ramirez L, Durdle, NG, Raso VJ, Hill DL. A support vector machines classifer to assess the severity of idiopathic scoliosis from surface topography. IEEE Trans Inf Technol Biomed.
    • IEEE Trans Inf Technol Biomed
    • Ramirez, L.1    Durdle, N.G.2    Raso, V.J.3    Hill, D.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.