메뉴 건너뛰기




Volumn 7, Issue 4, 2010, Pages 483-501

A Quantitative Voronovskaya Formula for Mellin Convolution Operators

Author keywords

K functional; Mellin convolution operators; Mellin derivatives; Moments; Voronovskaya formula

Indexed keywords


EID: 78649328795     PISSN: 16605446     EISSN: 16605454     Source Type: Journal    
DOI: 10.1007/s00009-010-0062-z     Document Type: Article
Times cited : (20)

References (23)
  • 1
    • 0011548786 scopus 로고
    • Limit semigroups of Bernstein-Schnabl operators associated with positive projection
    • Altomare F.: Limit semigroups of Bernstein-Schnabl operators associated with positive projection. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16(4), 259-279 (1989).
    • (1989) Ann. Scuola Norm. Sup. Pisa Cl. Sci. , vol.16 , Issue.4 , pp. 259-279
    • Altomare, F.1
  • 4
    • 5244340939 scopus 로고
    • Approssimazione mediante nuclei momento
    • Barbieri F.: Approssimazione mediante nuclei momento. Atti Sem. Mat. Fis. Univ. Modena 32, 308-328 (1983).
    • (1983) Atti Sem. Mat. Fis. Univ. Modena , vol.32 , pp. 308-328
    • Barbieri, F.1
  • 6
    • 34247573872 scopus 로고    scopus 로고
    • Pointwise convergence theorems for nonlinear Mellin convolution operators
    • Bardaro C., Mantellini I.: Pointwise convergence theorems for nonlinear Mellin convolution operators. Int. J. Pure Appl. Math. 27(4), 431-447 (2006).
    • (2006) Int. J. Pure Appl. Math. , vol.27 , Issue.4 , pp. 431-447
    • Bardaro, C.1    Mantellini, I.2
  • 7
    • 34247608250 scopus 로고    scopus 로고
    • Voronovskaya-type estimates for Mellin convolution operators
    • Bardaro C., Mantellini I.: Voronovskaya-type estimates for Mellin convolution operators. Result Math. 50, 1-16 (2007).
    • (2007) Result Math. , vol.50 , pp. 1-16
    • Bardaro, C.1    Mantellini, I.2
  • 8
    • 0003979555 scopus 로고
    • Die Grundlehren der mathematischen Wissenschaften, 145, Springer-Verlag, Berlin-Heidelberg-New York
    • P. L. Butzer and H. Berens, Semi-groups of operators and approximation. Die Grundlehren der mathematischen Wissenschaften, 145, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
    • (1967) Semi-groups of operators and approximation
    • Butzer, P.L.1    Berens, H.2
  • 10
    • 1842730304 scopus 로고    scopus 로고
    • A direct approach to the Mellin transform
    • Butzer P. L., Jansche S.: A direct approach to the Mellin transform. J. Fourier Anal. Appl. 3, 325-375 (1997).
    • (1997) J. Fourier Anal. Appl. , vol.3 , pp. 325-375
    • Butzer, P.L.1    Jansche, S.2
  • 18
    • 77951114229 scopus 로고
    • Interpolation spaces in the theory of approximation
    • In:,Proc. Int. Conf. Bombay, Dec. 16-20 1985, ISNM 76, Birkhä user
    • L. Maligranda, Interpolation spaces in the theory of approximation. in: Methods of functional analysis in approximation theory, Proc. Int. Conf. Bombay, Dec. 16-20 1985, ISNM 76, Birkhä user (1986), 263-279.
    • (1986) Methods of functional analysis in approximation theory , pp. 263-279
    • Maligranda, L.1
  • 19
    • 70350243714 scopus 로고
    • Lack of interpolation of linear operators in spaces of smooth functions
    • Mitjagin B. S., Semenov E. M.: Lack of interpolation of linear operators in spaces of smooth functions. Math. USSR-Izv. 11(6), 1229-1266 (1977).
    • (1977) Math. USSR-Izv. , vol.11 , Issue.6 , pp. 1229-1266
    • Mitjagin, B.S.1    Semenov, E.M.2
  • 21
    • 0008338884 scopus 로고
    • Exact interpolation theorems for Lipschitz continuous functions
    • Peetre J.: Exact interpolation theorems for Lipschitz continuous functions. Ricerche Mat. 18, 239-259 (1969).
    • (1969) Ricerche Mat. , vol.18 , pp. 239-259
    • Peetre, J.1
  • 22
    • 34247560136 scopus 로고
    • Approximation formulae of Voronovskaya type for certain convolution operators
    • Sikkema P. C.: Approximation formulae of Voronovskaya type for certain convolution operators. J. Approx. Theory 26, 26-45 (1979).
    • (1979) J. Approx. Theory , vol.26 , pp. 26-45
    • Sikkema, P.C.1
  • 23
    • 0002663429 scopus 로고
    • Determination of the asymptotic form of approximation of functions by the polynomials of S.N. Bernstein
    • Voronovskaya E. V.: Determination of the asymptotic form of approximation of functions by the polynomials of S. N. Bernstein. Dokl. Akad. Nauk SSSR A, 79-85 (1932).
    • (1932) Dokl. Akad. Nauk SSSR , vol.A , pp. 79-85
    • Voronovskaya, E.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.